Artificial intelligence aims to provide machines with similar processing and analysis capabilities as humans, making AI a useful counterpart to people in everyday life.
Artificial intelligence systems work by using algorithms and data. First, a massive amount of data is collected and applied to mathematical models, or algorithms, which use the information to recognize patterns and make predictions in a process known as training. Once algorithms have been trained, they are deployed within various applications, where they continuously learn from and adapt to new data. This allows AI systems to perform complex tasks like image recognition, language processing and data analysis with greater accuracy and efficiency over time.
Important subset of machine learning. It uses a type of artificial neural network known as deep neural networks, which contain a number of hidden layers through which data is processed, allowing a machine to go “deep” in its learning and recognize increasingly complex patterns, making connections and weighting input for the best results. Deep learning is particularly effective at tasks like image and speech recognition and natural language processing, making it a crucial component in the development and advancement of AI systems.