Working group: Diophantine geometry (online via Zoom, from July 25th, 2025)
Speakers:
Phạm Ngô Thành Đạt (Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS)
Nguyễn Minh Đức (Université Paris-Saclay)
Đào Quang Đức (University of Science and Technology of Hanoi)
Triệu Thu Hà (Hanoi University of Science and Technology)
Nguyễn Kiều Hiếu (Université de Versailles Saint-Quentin-en-Yvelines)
Lê Xuân Hoàng (VNU University of Science)
Nguyễn Khánh Hưng (Humboldt-Universität zu Berlin)
Nguyễn Quang Khải (Institut Camille Jourdan, Université Jean Monnet)
Nguyễn Mạnh Linh (Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS)
Nguyễn Hoàng Long (VNU University of Science)
Trương Tuấn Nghĩa (École normale supérieure, PSL)
References:
Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer New York, NY, 1977.
Marc Hindry and Joseph H. Silverman, Diophantine Geometry: An Introduction, Graduate Texts in Mathematics 201, Springer New York, NY, 2000.
James S. Milne, Algebraic number theory, 2020 (available at https://www.jmilne.org/math/CourseNotes/ANT.pdf).
James S. Milne, Fields and Galois theory, 2022 (available at https://www.jmilne.org/math/CourseNotes/FT.pdf).
Joseph H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer New York, NY, 2009.
Program:
An introduction to Diophantine geometry by Nguyễn Mạnh Linh (beamer and recording).
Heights on projective spaces by Nguyễn Hoàng Long.
Height machine à la Weil by Đào Quang Đức.
Abelian varieties and Jacobian by Phạm Ngô Thành Đạt.
Abelian varieties over number fields by Nguyễn Khánh Hưng.
Galois cohomology by Trương Tuấn Nghĩa.
Integral models and good reduction by Nguyễn Minh Đức.
The Mordell–Weil theorem by Nguyễn Kiều Hiếu.
Diophantine approximation by Lê Xuân Hoàng.
Roth's theorem and Siegel's theorems by Nguyễn Quang Khải.
The Riemann–Roch theorem on surfaces by Triệu Thu Hà.
Faltings' theorem, I (speaker TBD).
Faltings' theorem, II (speaker TBD).