All Numbers
Updated UTC 2025/6/30
Updated UTC 2025/6/30
3The numbers are not necessarily in size order, though they generally are.
((7*10^(10^(10^27385)))!)! = Whiteboard Number. At school a random 7 was drawn on a whiteboard. I turned it into 7*10^(10^(10^27385)), then later added the factorials.
(Whiteboard Number)Λ (bouncing factorial) = Bigger Whiteboard Number
17^^6 = Faramir (named by a friend of mine)
(17^^6)! = M&M (named by a friend of mine)
&|||,W&a:%(%..(a)..%(%a)..(a)..),W%a:a~~..(a)..~~a using SoCC = Soccotri
&||| = %%%||| = %%(|||~~~|||) = %%(|||||||||||||||||||||||||||)
%(27↑↑..(25)..↑↑27) = (27↑↑..(25)..↑↑27)↑↑..(27↑↑..(25)..↑↑27)..↑↑(27↑↑..(25)..↑↑27)
|||||||~^(|||||||~^(...|||||||~^(|||||||)|||||||...)|||||||)||||||| with |||||||~~~~~~~||||||| nestings = Heptasocc
F||||,WFa:GG..(G(a~|°))..GGa,WGa:HH..(H(a~|°))..HHa,WHa:a~^(a~^(a)a)a = Megasocc
3&10,Wa&b:CMb(1:%%%a,>1:%%..(a&(b-1))..%%a),W%a:$$..($a)..$$a,W$a:##..(#a)..##a,W#a:a~^(a~^(a~^(a)a)a)a = Gigasocc
[3,10],W[a,b]:CMb:(1:{a,a,a},>1:[[..(a)..[[a,b~|°],b~|°]..(a)..,b~|°],b~|°]),W{a,b,c}:CMb(1:CMc(1:###..(#a)..###a,>1:{a,{a,..(a)..{a,{a,a,c~|°},c~|°}..(a)..,c~|°},c~|°}),>1:{{..(a)..{{a,b~|°,c},b~|°,c}..(a)..,b~|°,c},b~|°,c}),W#a:a~^(a~^(..(a~^(a)a)..a~^(a~^(a)a)a..(a~^(a)a)..)a)a = Terasocc
(17^6)! = First Steps
((First Steps!)!)! = I've seen better
17{11}(I've seen better) = Okay, now we're getting somewhere
<[Okay, now we're getting somewhere]> (in brick notation) = Tough as nails
(Tough as nails)ѦѦ(11ѦѦ100) = Yus!
~(Yus!#3)~ (in Grilliard) = Grill his ahh
ESoCC(ESoCC(Grill his ahh)) = Soccampito
[Soccampito]↤[5]↤[4]↤[3]↤[2]↤[1]↤[100] = This Matrix Array is quite Mega
[0, 0]↤[This matrix array is quite Mega] = Another MAM number? In this economy?
[Another MAM number? In this economy?]↤↤[17] = I guess this is the new meta
~(I guess this is the new meta#8000000000)~ = Oh, nevermind
Goss(Oh, nevermind) = Wow, haven't seen Goss in a while
MGoss(Wow, haven't seen Goss in a while) = MGoss too?
GARTH(MGoss too?) = We don't talk about Charlie...
Quorvask(We don't talk about Charlie...) = Quorvask, more like... uh... dumb
(Quorvask, more like... uh... dumb)#3! (using Macro-Factorial notation) = It's really not much bigger
PDF(It's really not much bigger) = Neither is this
[Neither is this]↤[100]↤↤↤↤↤[10][100] = That's fine
ESoCC(That's fine) = Some big number
[1]ESoCC(Some big number) = I'm assuming a mini-sequence...
[100]ESoCC(I'm assuming a mini-sequence...) = Yep...
[Yep...]ESoCC(Yep...) = Oh well
f(Oh well) (f() function as defined for Megolhectoplex) = Still using SoCC functions?
v(10, Still using SoCC functions?) (v() function as defined for Vegol) = Hurry up
vv(10, Hurry up) (vv() function as defined for Vegolduplex) = Almost there
(Almost there)! = Really? All that just for a factorial?
(Round up) PSF(Really? All that just for a factorial?) = Hey... shouldn't it be Pi Scale Function?
(Hey... shouldn't it be Pi Scale Function?)↑↑↑↑↑10 = This is (not) bad
ESoCC(This is (not) bad) = Or is it?
[3]↤↤[Or is it?] = Finally, a change
[100]↤↤[Finally, a change] = MAMAMAMAM
[MAMAMAMAM]↤↤↤[3] = Well that is quite strange
~((Well that is quite strange)#2)~ (Grilliard) = Grilling burgers
~((Grilling burgers)#100)~ = Still cookin'
(Still cookin')↑↑2 = Yep, there it is. Tetration. And barely so.
◭(Yep, there it is. Tetration. And barely so.), 1, 1◮ (Using THOM notation) = Finally, some use of THOM
(Finally, some use of THOM)⎔1 = THOM is pretty cool
(THOM is pretty cool)⎔2 = The way it utilizes ordinals
(The way it utilizes ordinals)⎔100 = Is pretty neat
(Is pretty neat)⎔ω = And so powerful
(And so powerful)⎔ω+1 = At least, more than the other functions here
(At least, more than the other functions here)⎔ω2 = Still using THOM, huh?
(Still using THOM, huh?)⎔ω^2 = That's alright, I spent a lot of time on it
(That's alright, I spent a lot of time on it)⎔ω⎔2 = You can apply the function to ω
(You can apply the function to ω)⎔⎔ω = And add ⎔'s
(And add ⎔'s)[⎔]1 = Oh yeah, and the brackets too
(Oh yeah, and the brackets too)[⎔]3 = Oh so cool
(Oh so cool)[⎔]ω = Bigger than before
(Bigger than before)[⎔]ω[⎔]ω = Wow, that's large
(Wow, that's large)⎔3 = That's still larger, but not by too much.
(That's still larger, but not by too much.)↑↑↑100 = Pentation? Really? Pfft. Loser.
[1]ESoCC(Pentation? Really? Pfft. Loser.) = There we have it
(There we have it)⎔ω = Running out of stuff here...
(Running out of stuff here...)⎔ω+1 = This number is getting quite large
(This number is getting quite large)⎔ω+2 = But how large?
(But how large?)⎔ω+3 = Well, it's hard to say
(Well, it's hard to say)⎔ω+4 = Larger than googolplex?
(Larger than googolplex?)⎔ω+5 = Not even a competition.
(Not even a competition)⎔ω+6 = Larger than Graham's number?
(Larger than Graham's number?)⎔ω+7 = Definitely.
(Definitely.)⎔ω2 = Larger than TREE(3)?
(Larger than TREE(3)?)⎔ω2+1 = I honestly don't know.
(I honestly don't know.)⎔ω^^ω = ESoCC is used pretty heavily,
(ESoCC is used pretty heavily,)⎔◭ω, 1, 1◮ = And it is a very strong function.
(And it is a very strong function.)⎔◭ω, 1, 1, 1◮ = But just how strong?
[2]ESoCC(But just how strong?) = Well, it's impossible to tell
[3]ESoCC(Well, it's impossible to tell) = It is uncomputable
[ω+1]ESoCC(It is uncomputable) = And it can use ω
[ω2]ESoCC(And it can use ω) = Which naturally makes it powerful
[ω^9]ESoCC(Which naturally makes it powerful) = Alright, I'll stop glazing
ULTM(Alright, I'll stop glazing) = The point is,
ULTM((The point is,), 1) = This number is large.
ULTM((This number is large.), 1, 1) = But in the way it achieves it,
ULTM((But in the way it achieves it,), 1, 1, 1) = Means there is room for improvement.
ULTM([Means there is room for improvement.]) = It's just a salad number
ULTM(ULTM([It's just a salad number])) = There will always be a bigger number.
ULTM(ULTM([There will always be a bigger number.]), 1, 1) = But that doesn't mean
[1]ESoCC(But that doesn't mean) = It can't be fun.
To be continued
<333>/<333> = Tritron
<333>/<333>/<333> = Centra-Tritron
<[10]> = Dec-Little
<[100]> = Centiny
<[1,000,000]> = Mega-Little
<[<[<[<[<[5]>]>]>]>]> = Quin-Little
[100]<[<[<[<[<[100]>]>]>]>]> = Cent-Big
<[<[<[<[<[1000]>]>]>]>]>{1000, 1000} = Kilo-Big
<[<[<[<[<[1000]>]>]>]>]>{1000, 1000} /<[<[<[<[<[1000]>]>]>]>]>{1000, 1000} /<[<[<[<[<[1000]>]>]>]>]>{1000, 1000} = Kilo-Huge
<3> = 3-Little
<4> = 4-Little
<5> = 5-Little
<6> = 6-Little
<10> = 10-Little
<100> = 100-Little
<[3]> = 3-3-Little
<[4]> = 4-4-Little
<[5]> = 5-5-Little
<[10]> = 10-10-Little
<100, 100>{100, 100} = Gwaloogia
<[<[3]>]> = Trinestribri
<<[3]>, <[3]>, <[3]>...<[3]>, <[3]>> with <[3]> entries
<[3#3]> = Trihashbritri
<33, 33, 33> = <(<3, 3, 3>/<3, 3, 3>/<3, 3, 3>), (<3, 3, 3>/<3, 3, 3>/<3, 3, 3>), (<3, 3, 3>/<3, 3, 3>/<3, 3, 3>)>
<[33, 3#3]> = Tritretrihashbritri
<33, 33^3, 3(3^3)^3> = <33, 327, 319683>
<[52, 2#2, 2#2]> = Quinbichange
<<[52, 2#2]>, <[52, 4#2]>, <[52, 8#2]>, <[52, 16#2]>, <[52, 32#2]>>
<[33, 3#3, 3#3, 3#3]> = Treebrithree
<[44, 4#4, 4#4, 44#4]> = Tebriquad
<[33, 3#3, 3#3, 3#3, 3#3]> = Treemebrigithree
<333333, 4#333, 333, 333>/<333> = Kilo-Tritron
<333333, 4#333, 333>/<333, 333>/<333, 333> = Mega-Triton
<[100#100]> = Cent-Little
<[1,000,00010, 2#10]> = Mega-Medium
<[<[<[<[<[5#5]>]>]>]>]> = Quin-Medium
<[<[1,000,000,0001,000,000,000, 1,000,000,000#1,000,000,000]>]> = Giga-Huge
Course(4) = Tetrartet
Course(5) = Quiniq
Course(10) = Decaced
Course(100) = Centatnec
Course(1,000) = Kilolik
Course(1,000,000) = Megagem
Course(Course(100)) = Mega-cent
Course(3, 3) = Duotri
Course(3, 3, 3) = Triotri
Course(4, 4) = Duotetra
Course(4, 4, 4) = Tritetra
Course(Course(3, 3, 3)) = Mega-Triotri
Course(100, 100) = Duocent
Course(100, 100, 100) = Tricent
Course(5, 4, 3, 2, 1) = Prev-quin
Course(10, 9, 8, 7, 6, 5, 4, 3, 2, 1) = Prev-dec
Course(<10, 10, 10>, <10, 10, 10>, <10, 10, 10>) = Mega-dec
Course([10]) = Decadec
Course([100]) = Centacent
X(X(X(X(X(100))))) = Macro-Course
Quorvask(10) = Quordec
Quorvask(50) = Quorquindec
Quorvask(100) = Quorcent
Quorvask(1,000) = Quorkil
Quorvask100(10) = Quorcendec
Quorvask100(1,000,000) = Quorcenmega
Quorvask10↑↑↑↑10(100) = Megacendec
Quorvask10↑↑↑↑10100(100) = Megadoublecendec
Quorvask10↑↑↑↑↑↑10(100) = Gigacendec
QuorvaskG(64)(1,000) = Kilograham
QuorvaskTREE(3)(1,000,000) = Treemega
10![{10#10}] = Cudecabig
100![{100#1000}] = Yottamacent
10![{100}] = Kilogoogolfan
10![{{100}}] = Megagoogolfan
10![{{{100}}}] = Gigagoogolfan
10![1004] = Teragoogolfan
10![1005] = Petagoogolfan
10![1006] = Exagoogolfan
10![1007] = Zettagoogolfan
10![1008] = Yottagoogolfan
10![1009] = Ronnagoogolfan
10![10010] = Quetagoogolfan
10![100100] = Googolgoogolfan
10![10010![100]] = Googolplexifan
10![(10![100100])100] = Googolplexigoogolfan
10![@10] = 10![10, 10...10, 10] with 10![10] entries = Tenaten
10![@@10] = 10![@10, @10...@10, @10] with Tenaten entries = Tenbitaten
10![@@@10] = 10![@@10, @@10...@@10, @@10] with Tenbitaten entries = Tentritaten
10![10010] = Tenunaten
10![10![10![{{{100}}}]100]100] = Megatenutia
10![&&10] = 10![&1010] = 10![&(@@@@@@@@@@10)]] = 10![10![@@@@@@@@@@10]@@@@@@@@@@10] = Tenbinanden
10![&&&10] = 10![&&1010] = 10![10![10![10![@@@@@@@@@@10]@@@@@@@@@@10]@@@@@@@@@@10]@@@@@@@@@@10] = Tentrinanden
10![1010] = 10![&&&&&&&&&&10] = Tendenanden
10![100010] = Tenkilanden
10![Tenkilanden10] = 10![&&...&&10] with Tenkilanden &'s = Kilotenkilanden
GOSS(100) = Centigoss
GOSS(200) = Ducentigoss
GOSS(300) = Tricentigoss
GOSS(1,000,000) = Megagoss
GOSS(GOSS(1,000)) = Kilogosogoss
MGOSS(200) = Miter-200
[3]GOSS(200) = Mega-Miter-200
[4]GOSS(200) = Giga-Miter-200
[5]GOSS(200) = Tera-Miter-200
[200]GOSS(200) = Mega-Mega-Miter-200
[GOSS(200)]GOSS(200) = Giga-Mega-Miter
[[GOSS(200)]GOSS(200)]GOSS(200) = Tera-Mega-Miter
[4, 2]GOSS(4) = Gossul
[3, 3]GOSS(3) = Tregossul
[10, 3]GOSS(2) = Detredugossul
[10, 100]GOSS(10) = Gossulplex
PN(100) = Pyracent
PN(1000) = Pyrakil
DPN(100) = Dupyracent
DPN(1000) = Dupyrakil
TPN(1000) = Trepyrakil
TPN(TPN(TPN(100))) = Tritrepyrakil
100PN(100) = Centrapyracent
1000PN(100) = Kilopyracent
1000PN(1000PN(1000PN(1000))) = Tetrakilopyrakil
FN(100) = Factacent
FN(1000) = Factakil
DFN(1000) = Dufactakil
3FN(1000) = Trefactakil
100FN(1000) = Centrafactakil
1000FN(1000) = Kilofactakil
1000FN(1000FN(1000FN(1000))) Tetrakilofactakil
Fx(100) = Fixacent
Fx(1000) = Fixakil
2Fx(1000) = Dufixakil
3Fx(1000) = Trefixakil
1000Fx(1000) = Kilofixakil
1000Fx(1000Fx(1000Fx(1,000,000))) = Trekilofixameg
TrekilofixamegFx(TrekilofixamegFx(TrekilofixamegFx(Trekilofixameg))) = Gigamegakilofix
100#! = Centamack
100#2! = Centadumack
100#3! = Centatremack
100#100! = Centacentamack
100#(100#!)! = Ducentamack
100#(100#(100#!)!)! = Trecentamack
1250#(Trecentamack)! = Duodehalcentamack
17*2! = Septadecadumack
17*3! = Septadecatremack
100*100! = Bicentaramack
150*120! = Quincentaraducentamack
17*(17*(17*17!)!)! = Tetreseptadecamack
10Ѧ10Ѧ10Ѧ10 = Yussotet
10Ѧ10Ѧ10Ѧ10Ѧ10 = Yussoquin
10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10 = Yussohex
10ѦѦ10 = 10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10Ѧ10 = Yussodeck
10ѦѦ10ѦѦ10 = Yussodudeck
10ѦѦ10ѦѦ10ѦѦ10 = Yussotrideck
10ѦѦѦ10 = Yussotreck
10ѦѦѦ10ѦѦѦ10 = Yussodutreck
10ѦѦѦ10ѦѦѦ10ѦѦѦ10 = Yussotritreck
10ѦѦѦѦ10 = Yussoteteck
10Ѫ10 = Yussodecadeck
10Ѫ10Ѫ10 = Yussodudecadeck
10ѪѪ10 = Yussobideck
10ѪѪ10ѪѪ10 = Yussodubideck
10ѪѪѪ10 = Yussotrideck
10ѪѪѪ10ѪѪѪ10
10[Ѫ]10 = Trussodeck
10[Ѫ]10[Ѫ]10 = Trussodudeck
10[Ѫ][Ѫ]10 = Trussobideck
10[Ѫ][Ѫ][Ѫ]10 = Trussotrideck
10[[Ѫ]]10 = Pensodeck
10[[Ѫ]]10[[Ѫ]]10 = Pensodudeck
10{5}10 = Hexodeck
10{10}10 = Decodeck
10{10{10}10}10 = Deckiterdeck
10{{10}}10 = Dudecodeck
10{{{10}}}10 = Tredecodeck
10{10}410 = Tetradeck
10{10}1010 = Deckodeckadeck
10{10}10{10}10 = 10{10}10{10}1010 = Iterdeckodeckadeck
10{10}10{10}10{10}101010 = Tachyonicker
10{10}10{10}10{10}10 = 10{10}10{10}10{10}1010{10}10{10}10{10}1010 = Megatachy
10{10}{1}10 = Gigatachy
10{10}{2}10 = Teratachy
10{10}{10}10 = Megigatachy
10{10}{{10}}10 = Tachytachy
10{10}{10}{10}10 = Petatachy
10Ꙙ10 = Decatachy
10[Ꙙ]10 = Duodecatachy
10{[10]}10 = Megadecatachy
10Ꙝ10 = Gigadecatachy
10ꙜꙜ10 = Teratachy
10ꙜꙜꙜ10 = Petatritachy
10Ꙝ10ꙜꙜꙜ1010 = Tachyon
⟬3, 3, 3, 3⟭ = Tetrishel
= ⟬3, 3, ⟬3, 3, ⟬3, 3, ⟬3, 3, ⟬3, 3, ⟬3, 3, ⟬3, 3, 3⟭⟭⟭⟭⟭⟭ = 3^^...^^3 with 3^^...^^3 with 3^^...^^3 with 3^^...^^3 with 3^^...^^3 with 3^^...^^3 with 3^^^3 arrows...
⟬3, 3, 3, 3, 3⟭ = ⟬3|5⟭ = Quintrishel
= ⟬3, 3, 3, ⟬3, 3, 3, ⟬3, 3, 3, ⟬3, 3, 3, ⟬3, 3, 3, ⟬3, 3, 3, ⟬3, 3, 3, 3⟭⟭⟭⟭⟭⟭⟭
⟬5|5⟭ = Quinquishel
⟬10|10⟭ = Decadeshel
⟬10|10, 3⟭ = Tridecadeshel = ⟬10|⟬10|⟬10|⟬10|10, 2⟭⟭⟭⟭
⟬10|10|10⟭ = Trippedeshel
⟬10||10⟭ = Decabideshel
⟬10|||10⟭ = Decatrideshel
⟬10||||10⟭ = Decatedeshel
⟬10|||||10⟭ = Decapedeshel
⟬10\10⟭ = Desladeshel
⟬10\10, 10⟭ = Duodeslashel
⟬10\10\10⟭ = Tredeslashel
⟬10\\10⟭ = Dusladeshel
⟬10\\\10⟭ = Tresladeshel
⟬10\\\10\\\10⟭ = Tretrisladeshel
⟬10&10⟭ = Bideshel
⟬⟬10&10⟭&⟬10&10⟭⟭ = Dubideshel
⟬⟬⟬10&10⟭&⟬10&10⟭⟭&⟬⟬10&10⟭⟬10&10⟭⟭⟭ = Trebideshel
⟬(Trebideshel)&(Trebideshel)⟭ = Tetibideshel
⟬(Tetibideshel)&(Tetibideshel)⟭ = Penebideshel
⟬(Penebideshel)&(Penebideshel)⟭ = Hexibideshel
⟬(Hexibideshel)&(Hexibideshel)⟭ = Heptibideshel
⟬(Heptibideshel)&(Heptibideshel)⟭ = Octobidishel
⟬(Octobideshel)&(Octobideshel)⟭ = Nobideshel
⟬(Nobideshel)&(Nobideshel)⟭ = Deckeshel
⟦100, 100, 100, 100, 100⟧ = Quincentabrack
⟦100/10⟧ = Decacentabrack
⟦100/100⟧ = Centacentabrack
⟦5/5, 2⟧ = ⟦5/⟦5/⟦5/⟦5/5⟧⟧⟧⟧ = Biquindubrack
⟦5/5, 3⟧ = ⟦5/⟦5/⟦5/⟦5/5, 2⟧, 2⟧, 2⟧, 2⟧ = Biquintribrack
⟦10/10/2⟧ = Bidecadubrack
⟦10//10⟧ = Bidecaduslabrack
⟦10///10⟧ = Bidecatrislabrack
⟦10&10⟧ = Bidecandabrack
⟦⟦10&10⟧&⟦10&10⟧⟧ = Tetedecandabrack
⟦⟦⟦10&10⟧&⟦10&10⟧⟧&⟦⟦10&10⟧&⟦10&10⟧⟧⟧ = Tachybrack
x(1) = ⟦(Tachybrack)&(Tachybrack)⟧
x(n) = ⟦x(n-1)&x(n-1)⟧
x(x(x(x(x(...x(x(x(Tachybrack)))...))))) with x(x(x(Tachybrack))) applications of x() = Ultratachet
10⤇⤇3 = Decartri
10⤇⤇10 = Decardec
15⤇⤇12 = Quindecardodec
10⤇⤇10⤇3 Duodecartri
10⤇⤇10⤇⤇3 = Doduodecartri
10⤇⤇⤇10 = Decaduardec
10⤇[10] = Decarbradec
10⤇[10, 3] = Decardutre
3⤇[3]⤇[2] = Bitaredu
3⤇[3]⤇[3] = Bitaretri
10⤇⤇⤇[200] = Decarducen
10⤇[[100]] = Decardubracen
10⤇[[[300]]] = Decardubratricen
10⤇{100} = Tangol
10⤇{10⤇{100}} = Tangolplex
10⤇{10⤇{10⤇{100}}} = Tangolduplex
10⤇[100]3 = Decarcentribrack
10⤇[1000]4 = Decarkilotetabrack
10⤇[100]100 = Decarbicentabrack
10⤇[100]10⤇[100] = Decarcendecken
10⤇[100]@ where @ is Decarcendecken = Megacarcendecken (Biggest googolism on this site)
HG(2) = Hexagrobi
HG(3) = Hexagrotri
HG(17) = Hexaseptadec
HG(HG(1)) = Hexagrone
HG(HG(17)) = Duhexaseptadec
HG(HG(HG(17))) = Trihexaseptadec
HG(1, 4) = Hexategrone
HG(3, 10) = Decexagrotri
HG(10, 100) = Hexagoogra
HG(3, 3, 2) = HG(3, HG(3, HG(3, 3))) = Kilexagrotri
HG(7, 10, 2) = Megexagrodec
HG(3, 3, 3) = Gigexagrotri
HG(10, 3, 3) = Megigexagrotri
HG(10, 10, 100) = Plexigoogra
HG(3, 3, 3, 2) = Tritrexadu
HG(3, 3, 3, 3) = Tetexatri
HG([4]) = HG(4, 4, 4, 4) = Hexaquatet
HG([17]) = Hexasedebi
HG([HG([17])]) = Duhexasedebi
HG([3]2) = Exponexatri
HG([HG([HG([17])])]) = Trihexasedebi
HG([4]2) = Exponexatet
HG([5]2) = Exponexapen
HG([10]2) = Exponexadec
HG([10]3) = Tetronexadec
HG([10]1,2) = Dudecexagra
HG([10]2,2) = Medecexagra
HG([14]1,3) = HG([HG([...HG([HG([14]14,2)]14,2)...]14,2)]14,2) with 14 recursions = Tedexatrigra
HG([11]6,3) = Gidecexagra
HG([100]100,100) = Burvagarslav (A name mixing my favorite bands, Bush, Nirvana, Soundgarden, and Audioslave)
HG([16], 2) = Hexadexadu
HG([12], 3) = Dodecexatri
HG([12], 1, 2) = Dodecexundu
HG([12], 2, 10) = Dodecexaduten
HG([11], 6, 7, 8) = Undecexahexeptoc
HG([6, 2]) = Hexexaclodu
HG([6, 3]) = Hexexaclotri
HG([10, 100]) = Googexaclogol
HG([HG(11), HG(6)]) = Glysholitzen
HG([10, 100]2) = Googexaclogodu
HG([16, 12]3) = Sixteetwelexatri
HG([17, 11]6) = Mecomexa
HG([3, 3], 2) = HG([3, 3]3, 3, 3) = Bigthrexahedu
HG([10, 11, 3]) = Decundexacatri
HG([3, 3, 3, 3]) = Texatri
=HG([HG([HG([3, 2, 3, 3]), 2, 3, 3]), 2, 3, 3])
=HG([HG([HG([HG([HG([3, 1, 3, 3]), 1, 3, 3]), 1, 3, 3]), 2, 3, 3]), 2, 3, 3])
=HG([HG([HG([HG([HG([HG([HG([3, 3, 2, 3]), 3, 2, 3]), 3, 2, 3]), 1, 3, 3]), 1, 3, 3]), 2, 3, 3]), 2, 3, 3])
HG([33][2]) = Tritrexabidu
HG([3][3]) = Megextridutre
HG([3][1][2]) = Megextriundu
HG([33, 1][2]) = Trimegextrimundu
HG([7, 2][2]) = Firecracker
HG([Firecracker, 2][2]) = Handgrenade
HG([Handgrenade, 2][2]) = Napalm
HG([Napalm, 3][2]) = Tannerite
HG([Tannerite, 3][3]) = Trinitrotoluene
HG([6, Trinitrotoluene][17]) = Glycerine
HG([Glycerine, Glycerine][Glycerine]) = Nitroglycerine
HG([Nitroglycerine, Nitroglycerine][Nitroglycerine]) = Trinitroglycerine (I'm fairly certain as of 2025/2/1 this is my largest number.)
HG([6, 1, 1][2]) = Hexexundubdu
HG([6, 5, 4][3]) = Hexexquiquadubtri
HG([3, 3, 3, 3][33]) = Triptrexhetri
HG([3][3, 3]) = Triptrixdubtre
HG([3][3][3, 3]) = Hytretri
HG([3, 3, 3][3, 3, 3][3, 3, 3]) = Hymegtretri
HG([9[2]]) = Soninondu
HG([3[3]]) = Sonitritre
HG([11[6]]) = Sonilevihex
HG([1,700[Trinitroglycerine]]) = Atom-Bomb
HG([Atom-Bomb[Atom-Bomb]]) = H-Bomb
HG([H-Bomb[H-Bomb]]) = Thermonuclear-Warhead (As of 2025/2/3, I think this is my biggest number)
HG([Thermonuclear-Warhead[Thermonuclear-Warhead, Thermonuclear-Warhead]]) = Supernova (2025/2/4 Biggest number)
HG([3|3]) = Comthibrisnow
HG([Supernova||Comthibrisnow]) = Big-Bang (2025/2/6 Biggest number) Just think. All of this, through the long definition of Hexagraphs, decays down to in insane amount of HG(HG(HG(HG(......)))) onto an enormous number. Recursion is beautiful.
☾☾100|100,2☽|☾100|100,2☽, 2☽ = Megacresc
☾100||100☽ = Centurocresc
☾10:2☽ = Decabicresc
☾3:3☽ = Dutricresc
☾11:6☽ = Undecexacresc
☾10:100☽ = Googolcresc
☾(11,000,000):(6,000,000)☽ = Megundecexacresc
☾☾3:3☽:☾3:3☽☽ = Bidutricresc
☾☾☾3:3☽:☾3:3☽☽:☾☾3:3☽:☾3:3☽☽☽ = Tedutricresc
☾10:10:100☽ = Plexicrest
☾10::3☽ = Tendutricrest
☾10%2☽ = Tencenducrest
☾10%100☽ = Googolcencrest
☾10%10%100☽ = Plexicencrest
☾10?☽ = ☾10%9%8%7%6%5%4%3%2☽ = Tenstion
☾100?☽ = Censtion
☾10?2☽ = Tendustion
☾10?10☽ = Tenenstion
☾10?100☽ = Googostion
☾☾10?10☽?100☽ = Tengolistion
HP(12, 2) = Hexatweldupra
HP(3, 3) = Hexatritrepra
HP(88, 12) = Hexaoctotwelpra
HP(HP(99, 98), HP(68, 67)) = Hexarandopra
FP(2, 3) = Fixedutripra
FP(4, 2) = Fixetedupra
FP(5, 5) = Fixequinquinpra
FP(100, 88) = Fixecentoctopra
~(5,2)~ = ~(~(~(~(~(5)~)~)~)~)~ = 10^(10^(10^(10^(10^5)))) =10^(10^(10^(10^100,000))) = Grilquindu
~(5,3)~ = ~(~(~(~(~(5,2)~,2)~,2)~,2)~,2)~ = ~(~(~(~(Grilquindu,2)~,2)~,2)~,2)~ = Grilquintri
~(5,1,2)~ = ~(5,~(5,~(5,~(5,~(5,5)~)~)~)~)~ = Grilquinondu
~(3,3,3)~ = Griltriartri
~(6,2,3)~ = Grilexadutri
~(4,1,1,4)~ = Griltetonontet
~(2,2,2,2)~ = Grilquadu
~(4#2)~ = ~(4,4,4,4)~ = Griltetetetet
~(5#2)~ = ~(5,5,5,5,5)~ = Grilquinuinuinuinuin
~(3#3)~ = ~(~(~(3#2)~#2)~#2)~ = Griltrihashtri
~(10#100)~ = Grilgol
~(~(10#100)~#~(10#100)~)~ = Grilled Cheese
I have no idea how big these numbers actually are; more research needs to be done on HMG
HMG(3) = HMG-3
HMG(4) = HMG-4
HMG(5) = HMG-5
HMG(10) = HMG-10
HMG(10^100) = Mini-Miter
HMG(10, 1, 2) = HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, HMG(10, 10)))))))))) = Tiny-HMG
HMG(10, 2, 2) = HMG(HMG(HMG(HMG(HMG(HMG(HMG(HMG(HMG(HMG(10, 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2) = HMG(10, 2, 2) = HMG(HMG(HMG(HMG(HMG(HMG(HMG(HMG(HMG(Tiny-HMG, 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2), 1, 2) = Mini-HMG
HMG(3, 1, 1, 2) = HMG(3, 3, HMG(3, 3, HMG(3, 3, 3))) = Mid-HMG
HMG(3, 1, 1, 1, 2) = HMG(3, 3, 3, HMG(3, 3, 3, HMG(3, 3, 3, 3))) = Big-HMG
HMG([10]) = HMG(10, 10, 10, 10, 10, 10, 10, 10, 10, 10) = Large-HMG
HMG([100]) = Substantial-HMG
HMG([1000]) = Expansive-HMG
HMG([2000]) = Enormous-HMG
HMG([HMG(10)]) = Colossal-HMG
HMG([HMG(10, 1, 2)]) = Immense-HMG
HMG([HMG([4])]) = Monumental-HMG
HMG([HMG([10])]) = Massive-HMG
HMG([HMG([100])]) = Tremendous-HMG
HMG([HMG([1000])]) = Gargantuan-HMG
HMG([HMG([2000])]) = Titanic-HMG
HMG([HMG([HMG([10])])]) = Behemothic-HMG
HMG([HMG([HMG([100])])]) = Mammoth-HMG
HMG([HMG([HMG([1000])])]) = Mountainous-HMG
HMG([HMG([HMG([2000])])]) = Planetary-HMG
HMG([HMG([HMG([HMG([10])])])]) = Astronomical-HMG
HMG([HMG([HMG([HMG([100])])])]) = Galactic-HMG
HMG([HMG([HMG([HMG([1000])])])]) = Cosmic-HMG
HMG([HMG([HMG([HMG([2000])])])]) = Universal-HMG
HMG([HMG([HMG([HMG([HMG([10])])])])]) = Multiversal-HMG
HMG([10, 2]) = Decudask
HMG([3, 3]) = HMG([HMG([HMG([3, 2]), 2]), 2]) = HMG([HMG([HMG([HMG([HMG([3])])]), 2]), 2]) = Tritrask
HMG([10, 3]) = Decridask
HMG([3, 3, 3]) = HMG([HMG([HMG([3, 2, 3]), 2, 3]), 2, 3]) = Cutrask
HMG([102]) = Tetrudecask
HMG([103]) = Tetridecask
HMG([1010]) = Megecatask
HMG([HMG([1010])10]) = Gigecask
MCLAN(1) = First Clan
MCLAN(2) = Second Clan
MCLAN(3) = Third Clan
MCLAN(5) = Quinclan
MCLAN(10) = Declan
MCLAN(17) = Hedeclan
MCLAN(50) = Halcenclan
MCLAN(100) = Cenclan
MCLAN(10^100) = Gooclan
MCLAN(MCLAN(10)) = Mega-Declan
MCLAN(MCLAN(100)) = Mega-Cenclan
MCLAN(MCLAN(10^100)) Gooclanplex
[3]↤[3] = Trearmix
[2]↤[[2]↤[[2]↤[3]]]
[2]↤[[2]↤[[1]↤[[1]↤[[1]↤[3]]]]]
[2]↤[[2]↤[[1]↤[[1]↤[[0]↤[[0]↤[[0]↤[3]]]]]]]
[2]↤[[2]↤[[1]↤[[1]↤[6]]]]
[2]↤[[2]↤[[1]↤[12]]]
[2]↤[[2]↤[24]]
[2]↤[402,653,184]
402,653,184(2^402,653,184)
[3]↤[4] = Treatuarmix
[4]↤[2] = Teduarmix
[3]↤[[3]↤[2]]
[3]↤[[2]↤[[2]↤[2]]]
[3]↤[[2]↤[8]]
[3]↤[2,048]
[4]↤[3] = Tetriarmix
[3]↤[[3]↤[[3]↤[3]]]
[3]↤[[3]↤[[2]↤[402,653,184]]]
[4]↤[4] = Tetarmix
[3]↤[[3]↤[[3]↤[[3]↤[4]]]]
[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[4]]]]]]]
[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[64]]]]]]
[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[~1.26e+21]]]]]
[4]↤[5] = Tequinarmix
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[5]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[5]]]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[160]]]]]]]]
[4]↤[6] = Tetexarmix
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[6]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[6]]]]]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[384]]]]]]]]]]
[4]↤[7] = Teteptarmix
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[7]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[7]]]]]]]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[896]]]]]]]]]]]]
[4]↤[8] = Tetoctarmix
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[8]]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[8]]]]]]]]]]]]]]]
[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[2,048]]]]]]]]]]]]]]
[5]↤[2] = Quinduarmix
[4]↤[[4]↤[2]]
[4]↤[[3]↤[2,048]]
[5]↤[3] = Quintriarmix
[4]↤[[4]↤[[4]↤[3]]]
[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[3]]]]]
[4]↤[[4]↤[[3]↤[[3]↤[[2]↤[402,653,184]]]]]
[5]↤[4] = Quitetarmix
[4]↤[[4]↤[[4]↤[[4]↤[4]]]]
[4]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[64]]]]]]]]]
[5]↤[5] = Quiquinarmix
[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[5]]]]]
[4]↤[[4]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[160]]]]]]]]]]]]
[5]↤[6] = Quinexarmix
[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[6]]]]]]
[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[6]]]]]]]]]]]
[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[6]]]]]]]]]]]]]]]]
[4]↤[[4]↤[[4]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[384]]]]]]]]]]]]]]]
[6]↤[2] = Hexaduarmix
[5]↤[[5]↤[2]]
[5]↤[[4]↤[[4]↤[2]]]
[5]↤[[4]↤[[3]↤[[3]↤[2]]]]
[5]↤[[4]↤[[3]↤[[2]↤[[2]↤[2]]]]]
[5]↤[[4]↤[[3]↤[[2]↤[8]]]]
[5]↤[[4]↤[[3]↤[2,048]]]
[6]↤[3] = Hexatriarmix
[5]↤[[5]↤[[5]↤[3]]]
[5]↤[[5]↤[[4]↤[[4]↤[[4]↤[3]]]]]
[5]↤[[5]↤[[4]↤[[4]↤[[3]↤[[3]↤[[3]↤[3]]]]]]]
[5]↤[[5]↤[[4]↤[[4]↤[[3]↤[[3]↤[[2]↤[[2]↤[[2]↤[3]]]]]]]]]
[5]↤[[5]↤[[4]↤[[4]↤[[3]↤[[3]↤[[2]↤[[2]↤[24]]]]]]]]
[7]↤[2] = Heptaduarmix
[6]↤[[6]↤[2]]
[6]↤[[5]↤[[4]↤[[3]↤[[2]↤[2]]]]]
[6]↤[[5]↤[[4]↤[[3]↤[8]]]]
[6]↤[[5]↤[[4]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[8]]]]]]]]]]]
[6]↤[[5]↤[[4]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[2,048]]]]]]]]]]
[7]↤[3] = Heptriarmix
[6]↤[[6]↤[[6]↤[3]]]
[6]↤[[6]↤[[5]↤[[5]↤[[5]↤[3]]]]]
[6]↤[[6]↤[[5]↤[[5]↤[[4]↤[[4]↤[[3]↤[[3]↤[[2]↤[402,653,184]]]]]]]]]
[10]↤[2] = Decaduarmix
[9]↤[[8]↤[[7]↤[[6]↤[[5]↤[[4]↤[[3]↤[[2]↤[2]]]]]]]]
[9]↤[[8]↤[[7]↤[[6]↤[[5]↤[[4]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[[2]↤[2,048]]]]]]]]]]]]]
[10]↤[3] = Decartriarmix
[0]↤[0]↤[3] = Zertrearmix
[[[3]↤[3]]↤[3]]↤[3]
[[2]↤[402,653,184]]↤[3]
[0]↤[1]↤[3] = Zeruntrarmix
[0]↤[0]↤[[0]↤[0]↤[[0]↤[0]↤[3]]]
[0]↤[0]↤[[0]↤[0]↤[[[2]↤[402,653,184]]↤[3]]]
[0]↤[2]↤[3] = Zerdutrarmix
[0]↤[1]↤[[0]↤[1]↤[[0]↤[1]↤[3]]]
[0]↤[1]↤[[0]↤[1]↤[[0]↤[0]↤[[0]↤[0]↤[[[2]↤[402,653,184]]↤[3]]]]]
[1]↤[0]↤[3] = Unzertrarmix
[0]↤[[0]↤[[0]↤[3]↤[3]]↤[3]]↤[3]
[0]↤[[0]↤[[0]↤[2]↤[[0]↤[2]↤[[0]↤[2]↤[3]]]]↤[3]]↤[3]
[0]↤[[0]↤[[0]↤[2]↤[[0]↤[2]↤[[0]↤[1]↤[[0]↤[1]↤[[0]↤[0]↤[[0]↤[0]↤[[[2]↤[402,653,184]]↤[3]]]]]]]]↤[3]]↤[3]
[3]↤[3]↤[3] = Dutrearmix
[3]↤[2]↤[[3]↤[2]↤[[3]↤[2]↤[3]]]
[3]↤[2]↤[[3]↤[2]↤[[3]↤[1]↤[[3]↤[1]↤[[3]↤[1]↤[3]]]]]
[3]↤[2]↤[[3]↤[2]↤[[3]↤[1]↤[[3]↤[1]↤[[3]↤[0]↤[[3]↤[0]↤[[3]↤[0]↤[3]]]]]]]
[3]↤[2]↤[[3]↤[2]↤[[3]↤[1]↤[[3]↤[1]↤[[3]↤[0]↤[[3]↤[0]↤[[2]↤[[2]↤[[2]↤[3]↤[3]]↤[3]]↤[3]]]]]]]
[0, 0]↤[4] = Tetduarmix
[4]↤[4]↤[4]↤[4]
[4]↤[4]↤[3]↤[[4]↤[4]↤[3]↤[[4]↤[4]↤[3]↤[[4]↤[4]↤[3]↤[4]]]]
[4]↤[4]↤[3]↤[[4]↤[4]↤[3]↤[[4]↤[4]↤[3]↤[[4]↤[4]↤[2]↤[[4]↤[4]↤[2]↤[[4]↤[4]↤[2]↤[[4]↤[4]↤[2]↤[4]]]]]]]
[1]↤[2]↤[3]↤[4]↤[5] = Quintuonarmix
[0, 0]↤[5] = Quinzerduarmix
[5]↤[5]↤[5]↤[5]↤[5]
[0, 0, 0]↤[5] = Quinzertriarmix
[[[[[5, 5]↤[5], 5]↤[5], 5]↤[5], 5]↤[5], 5]↤[5]
[[[[[5, 5]↤[5], 5]↤[5], 5]↤[5], 5]↤[5], 5]↤[5]
[[[[[5, 4]↤[[5, 4]↤[[5, 4]↤[[5, 4]↤[[5, 4]↤[5]]]]], 5]↤[5], 5]↤[5], 5]↤[5], 5]↤[5]
[0, 0, 0, 0]↤[6] = Hextetarmix
[0, 0, 0]↤[0, 0, 0]↤[10] = Decarmixtridu
[2]↤↤[2] = Dududuarmix
= [1]↤↤[[1]↤↤[2]]
= [1]↤↤[[0]↤↤[[0]↤↤[2]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 2]↤[2]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 1]↤[2]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[2, 0]↤[2]]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[1, [2, 2]↤[1, 2]↤[2]]↤[2]]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[1, [2, 2]↤[0, 2]↤[[2, 2]↤[0, 2]↤[2]]]↤[2]]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[1, [2, 2]↤[0, 2]↤[[2, 2]↤[0, 1]↤[[2, 2]↤[0, 1]↤[2]]]]↤[2]]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[1, [2, 2]↤[0, 2]↤[[2, 2]↤[0, 1]↤[[2, 2]↤[0, 0]↤[[2, 2]↤[0, 0]↤[2]]]]]↤[2]]]]]
= [1]↤↤[[0]↤↤[[2, 2]↤[2, 1]↤[[2, 2]↤[2, 0]↤[[2, 2]↤[1, [2, 2]↤[0, 2]↤[[2, 2]↤[0, 1]↤[[2, 2]↤[0, 0]↤[[2, 1]↤[0, 0]↤[[2, 1]↤[0, 0]↤[2]]]]]]↤[2]]]]]
[100]↤↤[10] = Googarmix
[0]↤↤↤[3] = Zertriartriarmix
[3, 3, 3]↤↤[3, 3, 3]↤↤[3, 3, 3]↤↤[3]
[1]↤↤↤[3] = Untriartriarmix
[0]↤↤↤[[0]↤↤↤[[0]↤↤↤[3]]]
[0]↤↤↤[[0]↤↤↤[[3, 3, 3]↤↤[3, 3, 3]↤↤[3, 3, 3]↤↤[3]]]
[2]↤↤↤[3] = Dutriartriarmix
[1]↤↤↤[[1]↤↤↤[[1]↤↤↤[3]]]
[3]↤↤↤[3] = Tretriartriarmix
[2]↤↤↤[[2]↤↤↤[[2]↤↤↤[3]]]
[100]↤↤↤[10] = Googarmixplex
[0]↤↤↤↤[5] = Zertetarquinarmix
[100]↤↤↤↤[10] = Googarmixduplex
[2]↤↤↤↤↤[3] = Duquinartriarmix
[100]↤5[10] = Googarmixtriplex
[100]↤6[10] = Googarmixquadriplex
[100]↤7[10] = Googarmixquinplex
[100]↤8[10] = Googarmixhexiplex
[100]↤9[10] = Googarmixheptaplex
[100]↤10[10] = Googarmixoctoplex
[100]↤Googarmix[10] = Super-Googarmix
[100]↤Super-Googarmix[10] = Super-Super-Googarmix
[100]↤Super-Super-Googarmix[10] = Super-Super-Super-Googarmix
[100]↤Super-Super-......Super-Super-Googarmix[10] with Googarmix Super-s = Hyper-Googarmix
[100]↤Super-Super-......Super-Super-Googarmix[10] with Hyper-Googarmix Super-s = Hyper-Hyper-Googarmix
[100]↤Super-Super-......Super-Super-Googarmix[10] with Hyper-Hyper-Googarmix Super-s = Hyper-Hyper-Hyper-Googarmix
[100]↤Hyper-Hyper-......Hyper-Hyper-Googarmix[10] with Hyper-Hyper-...(Super-Googarmix)...Hyper-Hyper-Googarmix Hyper-s = Meta-Googarmix
DEN(1) = Little Den
DEN(2) = Duoden
DEN(3) = Triden
DEN(4) = Quaden
DEN(5) = Quinden
DEN(10) = Decaden
DEN(100) = Hectoden
DEN(DEN(100)) = Bectoden
DEN(DEN(DEN(100))) = Trectoden
ESoCC(30)
ESoCC(100) = Hectock
ESoCC(1000) = Kilock
ESoCC(10^10) = Tenbillock
ESoCC(10^100) = Esoogol
ESoCC(10^(10^100)) = Esplexoogol
ESoCC(G(64)) = Grahock
ESoCC(ESoCC(5)) = Double Socc 5
ESoCC(5) = 9~~~9 = 9^9 = 387,420,489
ESoCC(ESoCC(5)) = ESoCC(387,420,489)
ESoCC(ESoCC(6)) = Double Socc 6
I beleive ESoCC(6) = 9~^(9)9
ESoCC(ESoCC(100)) = Double Socc 100
ESoCC(ESoCC(10^100)) = Esoogolplex
ESoCC(ESoCC(ESoCC(5))) = Triple Socc 5
ESoCC(TREE[3]) = Treek
ESoCC(Double Socc 5)
[1]ESoCC(3) = Threesocc
= ESoCC(ESoCC(ESoCC(3)))
[1]ESoCC(4) = Foursocc
= ESoCC(ESoCC(ESoCC(ESoCC(4))))
[1]ESoCC(5) = Fivesocc
[1]ESoCC(10) = Tensocc
[1]ESoCC(100) = Mega King Socc
ESoCC^300(300) = Miter-300
[1]ESoCC(10^100) = Hypesoogol
[1]ESoCC([1]ESoCC(10^100)) = Hypesoogolplex
[1]ESoCC([1]ESoCC([1]ESoCC(10^100))) = Hypesoogolduplex
[2]ESoCC(3) = Duthresocc
[1]ESoCC([1]ESoCC(ESoCC(ESoCC(ESoCC(3)))))
I think ESoCC(3) must be simply 999. 9~9 is only 18. 9~~ is only 10.
[2]ESoCC(4) = Dutetsocc
I think ESoCC(4) is 9999. 9~~9 is only 81, 9~99 is only 108.
[2]ESoCC(10) = Milsocc
[2]ESoCC(10^100) = Metesoogol
[2]ESoCC(Metesoogol) = Metesoogolplex
[3]ESoCC(3) = Tritresocc
[3]ESoCC(10) = Bilsocc
[4]ESoCC(10) = Trilsocc
[5]ESoCC(100) = Megolsocc
[10]ESoCC(10) = Decosoccarde
[10]ESoCC(100) = Megol
[100]ESoCC(10) = Goosocc
The definitions of some numbers have changed due to the definition of ESoCC changing.
[[10]ESoCC(10)]ESoCC(10) = Big Socc
[Megol]ESoCC(10) = Megolplex
[Megolplex]ESoCC(10) = Megolduplex
[Megolduplex]ESoCC(10) = Megoltriplex
f(1) = Megol
f(g) = [f(g-1)]ESoCC(10)
f(100) = Megolhectoplex
f(200) = Megolduhectoplex
f(300) = Megoltrihectoplex
f(1000) = Megolkiloplex
f(1000000) = Megolmegaplex
f(1000000000) = Megolgigaplex
f(1000000000000) = Megolteraplex
f(Megol) = Megolhyperplex
[[[...[[10]ESoCC(10)]ESoCC(10)...]ESoCC(10)]ESoCC(10)]ESoCC(10) (with Big Socc recursions) = Bigger Socc
v(n, 1) = [n]ESoCC(n)
v(n, k) = v(v(...v(v(n, k-1), k-1)..., k-1), k-1) with n nestings
v(10, 3) = Vuncodecatri
v(10, 4) = Vuncodecatet
v(10, 5) = Vuncodecapen
v(10, 10) = Vuncobidec
v(10, 100) = Vegol
v(10, Vegol) = Vegolplex
vv(n, 1) = Vegol
vv(n, k) = v(n, vv(n, k-1))
vv(10, 3) = Vegolduplex
vv(10, 4) = Vegoltriplex
vv(10, 10) = Vegoldecaplex
vv(10, 100) = Vegolhectoplex
vv(10, 200) = Vegolduhectoplex
vv(10, 1000) = Vegolkiloplex
vv(10, 1000000) = Vegolmegaplex
vv(10, 1000000000) = Vegolgigaplex
vv(10, 1000000000000) = Vegolteraplex
vv(10, Vegol) = Vegolhyperplex
T(n, 1) = vvn(n, vn(n, fn(n)))
T(n, d) = T(T(...T(T(n, d-1), d-1)..., d-1), d-1) with n nestings
T(3, 1) = vv(3, vv(3, vv(3, v(3, v(3, v(3, f(f(f(3)))))))))
T(4, 1) = vv(4, vv(4, vv(4, vv(4, v(4, v(4, v(4, v(4, f(f(f(f(4))))))))))))
T(3, 2) = T(T(T(3, 1), 1), 1)
T(3, 1) = Tethrone
T(4, 1) = Tetetone
T(3, 2) = Tethdu
T(3, 3) = Tethretri
The number has changed once again.
T(T(T(3, 3), T(3, 3)), T(T(3, 3), T(3, 3))) = Miter's Number. The definition has changed once again.
[ω+1]ESoCC(3) = Megathrosocc
[ω+2]ESoCC(3) = Megaduthrosocc
[ω2]ESoCC(3) = Dumegathrosocc
[ω^2]ESoCC(3) = Megamegathrosocc
[ω^ω]ESoCC(3) = McMegathrosocc
[ω^ω^ω]ESoCC(3) = MickoMegathrosocc
[ω^^^ω]ESoCC(3) = MickosongoMegathrosocc
[ω⎔ω]ESoCC(3) = Thomothrosocc
[ω*Thomothrosocc]ESoCC(3) = Biggothrocc
PSF(1) = Penunpi
PSF(2) = Pedupi
PSF(3) = Petripi
PSF(10) = Pedepi
PSF(100) = Pehectopi
PSF(PSF(1)) = Dupenunpi
PSF(PSF(2)) = Dupedupi
PSF(PSF(PSF(1))) = Tretripi
◭2, 1, 1◮ = Duthon
◭2, 2, 1◮ = Biduthon
◭2, 1, 2◮ = Odd Biduthon
◭2, 2, 2◮ = Triduthon
◭2, 1, 1, 1◮ = Meduthon
◭2, 2, 1, 1◮ = Mebiduthon
◭2, 1, 2, 1◮ = Odd Mebiduthon
◭2, 2, 2, 1◮ = Metriduthon
◭2, 1, 1, 2◮ = Megodd Mebiduthon
◭2, 2, 1, 2◮ = Odd Metriduthon
◭2, 1, 2, 2◮ = Megodd Metriduthon
◭2, 2, 2, 2◮ = Meteduthon
◭3, 1, 1◮ = Trithon
◭3, 2, 1◮ = Trithondu
◭3, 3, 1◮ = Bitrithon
◭3, 1, 2◮ = Trithonundu
◭3, 2, 2◮ = Trithonbidu
◭3, 3, 2◮ = Bitrithondu
◭3, 1, 3◮ = Trithonuntri
◭3, 2, 3◮ = Trithondutri
◭3, 3, 3◮ = Tritho
◭3, 1, 1, 1◮ = Metrithon
◭3, 2, 1, 1◮ = Metrithondu
◭3, 3, 1, 1◮ = Mebitrithon
◭3, 1, 2, 1◮ = Metrithonundun
◭3, 2, 2, 1◮ = Metrithonbidun
◭3, 3, 2, 1◮ = Mebitrithondun
◭3, 1, 3, 1◮ = Metrithonuntriun
◭3, 2, 3, 1◮ = Metrithondutriun
◭3, 3, 3, 1◮ = Metritrithonun
◭3, 1, 1, 2◮ = Metrithonbidundu
◭3, 2, 1, 2◮ = Metrithondundu
◭3, 3, 1, 2◮ = Mebitrithonundu
◭3, 1, 2, 2◮ = Metrithonunbidu
◭3, 2, 2, 2◮ = Metrithontridu
◭3, 3, 2, 2◮ = Mebitrithonbidu
◭3, 1, 3, 2◮ = Metrithonuntridu
◭3, 2, 3, 2◮ = Metrithondutridu
◭3, 3, 3, 2◮ = Metritrithondu
◭3, 1, 1, 3◮ = Metrithonbiuntri
◭3, 2, 1, 3◮ = Metriduntri
◭3, 3, 1, 3◮ = Mebitrithonuntri
◭3, 1, 2, 3◮ = Metrithonundutri
◭3, 2, 2, 3◮ = Metrithonbidutri
◭3, 3, 2, 3◮ = Mebitrithondutri
◭3, 1, 3, 3◮ = Metrithonunbitri
◭3, 2, 3, 3◮ = Metrithondubitri
◭3, 3, 3, 3◮ = Metetrithon
◭10, 10, 100◮ = Droogol
◭10, 10, 10, 100◮ = Droogolplex
◭10, 10, 10, 10, 100◮ = Droogolduplex
◭3, 1, 1, 1, 1, 1, 1, 1, 1, 1◮ = Some Big 3 Number
3⎔2 = Thretuex
3⎔ω = Thremego
10⎔100 = Medroogol
3⎔100 = Trithohector
1000⎔ω = kilhomeg
3⎔3⎔3 = Trithotri
4⎔4⎔4 = Trithotet
10⎔10⎔100 = Medroogolplex
3⎔3⎔3⎔3 = Tethotri
4⎔4⎔4⎔4 = Tethotet
10⎔10⎔10⎔100 = Medroogolduplex
3⎔4⎔5⎔6⎔7⎔8⎔9⎔10 = Increthotredec
10⎔9⎔8⎔7⎔6⎔5⎔4⎔3⎔2⎔1 = Decrethodecun
3⎔ω+1 = Trithomegiter
4⎔ω+1 = Tethomegiter
5⎔ω+1 = Penthomegiter
6⎔ω+1 = Hexthomegiter
7⎔ω+1 = Hepthomegiter
8⎔ω+1 = Octhomegiter
9⎔ω+1 = Nonthomegiter
10⎔ω+1 = Decthomegiter
2⎔ω+2 = Dugar
3⎔ω+2 = Trithomegdutre
2⎔ω+3 = Dugarplex
2⎔ω+4 = Dugarduplex
2⎔ω3 = Dugarhyperplex
100⎔2ω = Hecthomdug
2⎔ω+100 = Songol
2⎔ω+101 = Songolplex
2⎔ω+102 = Songolduplex
2⎔ω+200 = Songolhectoplex
2⎔ω+Songol = Songolhyperplex
2⎔ω*(2⎔ω*(2⎔ω2)) = Songolegaplex
2⎔⎔ω = Slingol
2⎔⎔ω+1 = Slingolplex
2⎔⎔ω+2 = Slingolduplex
2⎔⎔ω200 = Slingolingol
2⎔⎔◭ω, 20◮ = Slingolingomingol
7001⎔⎔⎔147324105 = Toolus
A reference to the song/album "Lateralus" by TOOL, using leetspeak.
3⎔ω^2 = Trimegsqrex
3⎔ω^ω = Trimegmegex
3⎔ω⎔1 = Trithomumegun
3⎔ω⎔2 = Trithomumegadu
3⎔ω⎔ω = Trithomdomega
3⎔⎔1 = Threemegex
3⎔⎔2 = Threemexduex
3⎔⎔ω = Tripenthomeg
3⎔⎔⎔ω+1 = Tritrexthomegiter
3[⎔]1 = Trundexabrack
3⎔⎔⎔3
10[⎔]1 = Decunexabrack
3[⎔]2 = Tridunexabrack
3[⎔]ω = Trithomegabrack
10[⎔]ω = Decthomegbrack
400[⎔]ω = Miter-400
((3[⎔]ω)[⎔]ω)[⎔]ω = Trithomegbrackiter
4[⎔]5 = Tethoquibrack
4[⎔]ω+1 = Tethomegabrackiter
100[⎔]ω+1 = Hectothom
3[⎔]◭ω, 1◮ = Trithomegriun
3[⎔]◭ω, 2◮ = Trithomegridu
3[⎔]◭ω, ω◮ = Trithomegrimeg
3[⎔]◭ω, 1, 1◮ = Trithomegribinun
3[⎔]◭ω, 2, 1◮ = Trithomegridun
3[⎔]◭ω, ω, 1◮ = Trithomegrimegun
3[⎔]◭ω, 1, 2◮ = Trithomegriundu
3[⎔]◭ω, 2, 2◮ = Trithomegribidu
3[⎔]◭ω, ω, 2◮ = Trithomegrimegadu
3[⎔]◭ω, 1, ω◮ = Trithomegriunga
3[⎔]◭ω, 2, ω◮ = Trithomegriduga
3[⎔]◭ω, ω, ω◮ = Tribrackitrimega
3[⎔]3[⎔]1 = Bitribrackun
3[⎔]ω[⎔]ω = Threeams
10[⎔]ω[⎔]ω[⎔]ω[⎔]ω[⎔]ω = Biggams
3[⎔]ω[⎔]ω...[⎔]ω[⎔]ω[⎔]ω with Biggams ω's = Utter Biggams = ULTM(1)
2◈0 = Duey
3◈0 = Truey
2◈1 = Duney
3◈1 = Truney
3◈2 = Truneduey
3◈ω = Trumeguney
3◈ω+1 = Trumegiterney
3◈ω+2 = Trumegdutiterney
3◈ω2 = Trudumegerney
3◈ω3 = Trutrimegerney
3◈◈1 = Dutruney
3◈◈ω = Dutrumeguney
3◈◈ω+1 = Dutrumegiteruney
3◈◈ω+2 = Dutrumegiduteruney
3◈◈◈ω = Tretrumeguney
3◈◈◈ω+1 = Tretrumegiteruney
3[◈]1 = Metruney
3[◈]2 = Metruduney
3[◈]ω = Metrumeguney
3[◈]ω+1 = Metrumegiterney
3[◈]ω+2 = Metrumegiduterney
3[◈]ω2 = Metrumegitriterney
3[◈]ω+4 = Metrumegiteterney
3[◈]ω+5 = Metrumegipenterney
3[◈]ω3 = Metrumegihexterney
500[◈]ω+500 = Miter-500
3[◈]ω[◈]ω[◈]ω = Triggams
ULTM(2) = Dutter Biggams
ULTM(3) = Thrutter Biggams
ULTM(10) = Decutter Biggams
ULTM(Biggams) = Biggaplex
ULTM(2, 1) = Duttun Biggams
ULTM(3, 1) = Thruttun Biggams
ULTM(2, 2) = Bidutter Biggams
ULTM([3]) = Trethrutter Biggams
ULTM([5]) = Quipenutter Biggams
ULTM([10]) = Decadecutter Biggams
ULTM([Biggams]) = Meta Biggaplex
ULTM([ULTM([3])]) = Massopla
ULT([Massopla]) = Giggopla
4⤳1 = Fourvy
= (((4⤳0)⤳0)⤳0)⤳0 = ((16⤳0)⤳0)⤳0 =(65536⤳0)⤳0 = 2^(2^65536)
2⤳2 = Tuvydu
(2⤳1)⤳1
16⤳1
3⤳2 = Threevydu
4⤳2 = Fourvydu
2⤳3 = Tuvytri
3⤳3 = Threevytri
4⤳3 = Fourvytri
2⤳0⤳0 = Double Wave
2⤳(2⤳2)
3⤳0⤳0 = Triple Wave
3⤳(3⤳(3⤳3))
4⤳0⤳0 = Quadruple Wave
4⤳(4⤳(4⤳(4⤳4)))
2⤳1⤳0 = DuDouble Wave
(2⤳0⤳0)⤳0⤳0
2⤳2⤳0 = MegaDouble Wave
(2⤳1⤳0)⤳1⤳0
2⤳0⤳1 = Megazerdu Wave
2⤳(2⤳2⤳0)⤳0
2⤳1⤳1 = Megadun Wave
(2⤳0⤳1)⤳0⤳1
2⤳2⤳1 = Megabidu Wave
(2⤳1⤳1)⤳1⤳1
2⤳0⤳2 = Megabiduzer Wave
2⤳(2⤳2⤳1)⤳1
2⤳1⤳2 = Megadozer Wave
(2⤳0⤳2)⤳0⤳2
2⤳2⤳2 = Gigadozer Wave
(2⤳1⤳2)⤳1⤳2
2⤳2⤳2⤳2 = Gigadozer
2⤳2⤳2⤳2⤳2 = Teradozer
2⤳2⤳2⤳2⤳2⤳2 = Petadozer
2⤳2⤳2⤳2⤳2⤳2⤳2 = Exadozer
2⤳⤳⤳2 = Zetadozer
2⤳⤳⤳⤳2 = Yottadozer
2⤳[2] = Killdozer
(2⤳[1])⤳[1] = ((2⤳[0])⤳[0])⤳[1] = ((2⤳⤳2)⤳[0])⤳[1] = (((2⤳⤳1)⤳⤳1)⤳[0])⤳[1] = ((((2⤳⤳0)⤳⤳0)⤳⤳1)⤳[0])⤳[1] = ((((2⤳2)⤳⤳0)⤳⤳1)⤳[0])⤳[1] = (((16⤳⤳0)⤳⤳1)⤳[0])⤳[1]