I am a Leverhulme Research Fellow in the Machine Learning Group at the University of Cambridge, a College Research Associate at King’s College Cambridge, and an Associate Fellow at the Leverhulme Centre for the Future of Intelligence. I work on Trustworthy Machine Learning, with a focus on the deployment of algorithmic tools in criminal justice. As part of my Leverhulme fellowship, I am developing a human-centric framework for evaluating and mitigating risk in causal models.
Before Cambridge, I was a Research Fellow in Machine Learning at the University of Sussex, focusing on fairness, equality, and access. I obtained a PhD in Analytical Science (Physics) from the University of Warwick, hold an M.Sc. in Physics, and a dual B.Sc. in Physics and Biology from Tel Aviv University.
News
08/2023: Two papers accepted @ EAMMO2023
05/2023: Paper on detecting harmful communication strategies accepted @ AIES2023
04/2023: Paper on the progression of disparities within the criminal justice system accepted @ FAccT2023
03 /2023: Chatted on AI: 'Risks to society' with James Reynolds @ OS on BBC World Service.
12/2022: Delighted to participate in the panel discussion: What’s Not Said in Papers: Advice for a Meaningful Career in Machine Learning at Neurips @ Cambridge
11/22: Excited to speak @ Royal Institute of Philosophy's Public Lecture series on Philosophy of Crime and Policing
9/2022: A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets @ NeurIPS2022
Selected publications
Media Coverage of Predictive Policing: Bias, Police Engagement, and the Future of Transparency
H. Camilleri, C. Ashurst, N. Jaisankar, A. Weller, and M. Zilka. EAAMO, 2023.
Exploring Police Perspectives on Algorithmic Transparency: A Qualitative Analysis of Police Interviews in the UK
M. Zilka., C. Ashurst, L. Chambers, E. P. Goodman, P. Ugwudike, and M. Oswald. EAAMO, 2023.
AI and the EU Digital Markets Act: Addressing the Risks of Bigness in Generative AI
A. G. Yasar, A. Chong, E. Dong, T. K. Gilbert, S. Hladikova, R. Maio, C. Mougan, X. Shen, S. Singh, A. Stoica, S. Thais, and M. Zilka.
Generative AI + Law (GenLaw), hosted at ICML, 2023.
D. Cook*, M. Zilka*, H. DeSandre, S. Giles, and S. Maskell. AIES, 2023.
M. Zilka, R. Fogliato, J. Hron, B. Butcher, C. Ashurst and A. Weller. FAccT, 2023.
Conformal Prediction for Resource Prioritisation in Predicting Rare and Dangerous Outcomes
V. Babbar, U. Bhatt, M. Zilka, and A. Weller. NeurIPS 2022 Workshop on Human in the Loop Learning, 2022.
A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets
M. Zilka*, B. Butcher*, and A. Weller. NeurIPS, Datasets and Benchmarks track, 2022.
The UK Algorithmic Transparency Standard: A Qualitative Analysis of Police Perspectives
M. Oswald, L. Chambers, E. P. Goodman, P. Ugwudike, and M. Zilka. SSRN, 2022.
Can We Automate the Analysis of Online Child Sexual Exploitation Discourse?
D. Cook, M. Zilka, H. DeSandre, S. Giles, A. Weller, and S. Maskell. arXiv, 2022.
Differential Enforcement and the Progression of Disparities within the Criminal Justice System
M. Zilka, C. Ashurst, R. Fogliato, and A. Weller. ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO), 2022.
B. Butcher*, M. Zilka*, and A. Weller. ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO), 2022.
A Framework for Human-in-the-Loop High-Precision Information Extraction from Text Documents
B. Butcher, M. Zilka, and A. Weller. ICML Workshop on Human-Machine Collaboration and Teaming, 2022.
M. Zilka*, H. Sargeant*, and A. Weller. AAAI/ACM Conference on AI, Ethics and Society (AIES), 2022.
Racial Disparities in the Enforcement of Marijuana Violations in the US
B. Butcher*, C. Robinson*, M. Zilka*, R. Fogliato, C. Ashurst, and A. Weller. AAAI/ACM Conference on AI, Ethics and Society (AIES), 2022.
An Algorithmic Framework for Positive Action
O. Thomas, M. Zilka, and A. Weller, N. Quadrianto. ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO), 2021. [selected for oral presentation]
A Psychology-Driven Computational Analysis of Political Interviews
D. Cook, M. Zilka, S. Maskell, and L. Alison. Interspeech, 2021.
A.L. Webber, J.R. Yates, M. Zilka, S. Sturnio, L.C. Uldry, E.K. Corlett, C.J. Pickard, M. Pérez-Torralba, M.A. Garcia, D.S. Maria, R.M. Claramunt, and S.P. Brown. The Journal of Physical Chemistry A, 2019.
P. Thureau, S. Sturniolo, M. Zilka, F. Ziarelli, d. Viel, J.R. Yates, and G. Mollica. Magnetic Resonance in Chemistry, 2019.
An NMR Crystallography Investigation of Furosemide
M. Zilka, S.P. Brown, and J.R. Yates. Magnetic Resonance in Chemistry, 2019.
Visualising Packing Interactions in Solid-State NMR: Concepts and Applications
M. Zilka, S. Sturniolo, S.P. Brown, and J.R. Yates. The Journal of Chemical Physics, 2017.
M. Zilka, D. V. Dudenko, C. E. Hughes, P.A. Williams, S. Sturniolo, T. W. Franks, C. J. Pickard, J.R. Yates, K. D. M. Harris, Kenneth, and S.P. Brown. Physical Chemistry Chemical Physics, 2017.
Visualization and Processing of Computed Solid-State NMR Parameters: MagresView and MagresPython
S. Sturniolo, T.F. Green, R.M. Hanson, M. Zilka, K.Refson, P. Hodgkinson, S. P. Brown, and J. R. Yates. Solid State Nuclear Magnetic Resonance, 2016.
R. E. Shamur, M. Zilka, T. Hassner, V. China, A. Liberzon, and R. Holzman. Journal of Experimental Biology, 2016.
R. Holzman, V. China, S. Yaniv, and M. Zilka. Integrative and Comparative Biology, 2015.
The Star Formation History of the Milky Way’s Nuclear Star Cluster
O. Pfuhl, T. K. Fritz, M. Zilka, H. Maness, F. Eisenhauer, R. Genzel, S. Gillessen, T. Ott, K. Dodds-Eden, and A. Sternberg. The Astrophysical Journal, 2011
An Extremtely Top-Heavy Initial Mass Function in the Galactic Center Stellar Disks
H. Bartko, F. Martins, S. Trippe, T. K. Fritz, R. Genzel, T. Ott, F. Eisenhauer, S. Gillessen, T. Paumard, T. Alexander, K. DoddsEden, O. Gerhard, Y. Levin, L. Mascetti, S. Nayakshin, H. B. Perets, G. Perrin, O. Pfuhl, M. J. Reid, D. Rouan, M. Zilka, and A. Sternberg. The Astrophysical Journal, 2009.