email: michal.lipinski [at] ist.ac.at or lipinski.msl [at] gmail.com
orcid: 0000-0001-9789-9750
Positions:
2023 - (now) - Postdoctoral researcher (IST-Bridge, Marie Skłodowska-Curie fellow) at Institute of Science and Technology, Klosterneuburg, Austria
2021 - 2023 - Postdoctoral researcher at Dioscuri Centre in Topological Data Analysis, IMPAN, Warsaw
2018 - 2022 - Research/teaching assistant at Institute of Computer Sciences and Mathematics of Jagiellonian University, Kraków
Education:
2016 - 2021 - Ph.D. in Computer Science, Jagiellonian University
2012 - 2017 - Master and Bachelor studies in Computational Mathematics, Jagiellonian University
2011 - 2016 - Master and Bachelor studies in Cognitive Sciences, Jagiellonian University
2009 - 2012 - Bachelor studies in Economics, Jagiellonian University
Publications list:
T.K. Dey, M. Lipiński, M. Soriano-Trigueros, "Conley-Morse persistence barcode: a homological signature of a combinatorial bifurcation ", arXiv.2504.17105, 2025.
T. K. Dey, M. Lipiński, A. Haas, ”Computing Connection Matrix and Persistence Efficiently from a Morse Decomposition,” arXiv.2502.19369, 2025.
H. Edelsbrunner, M. Lipiński, M. Mrozek and M. Soriano-Trigueros, "The Poset of Cancellations in a Filtered Complex", arXiv:2311.14364, 2024.
M. Lipiński, K. Mischaikow and M. Mrozek, “Morse Predecomposition of an invariant set,” Qualitative Theory of Dynamical Systemss 24, 5 (2025).
P. Dłotko, M. Lipiński, and J. Signerska-Rynkowska, “Testing Topological Conjugacy of Time Series,” SIAM Journal of Applied Dynamical Systems, vol. 23, no. 4, 2024.
T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta, ”Computing Connection Matrices via Persistence-like Reductions,” SIAM Journal on Applied Dynamical Systems, vol. 23 (1), 2024.
D. Woukeng, D. Sadowski, J. Leśkiewicz, M. Lipiński, and T. Kapela, “Rigorous computation in dynamics based on topological methods for multivector fields,” Journal of Applied and Computational Topology, 2023.
M. Lipiński, J. Kubica, M. Mrozek, and T. Wanner, “Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces,” Journal of Applied and Computational Topology, 2022.
T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta, ”Tracking Dynamical Features via continuation and persistence,” Proceedings of the 38th International Symposium on Computational Geometry, 2022.
M. Lipiński, D. Mosquera-Lois, and M. Przybylski, ”Morse theory for loop-free categories,” arXiv:2107.06202, 2021.
B. Zieliński, M. Lipiński, M. Juda, M. Zeppelzauer, and P. Dłotko, “Persistence codebooks for Topological Data Analysis,” Artificial Intelligence Reviews, 54 (3) pp. 1969–2009, 2021.
B. Zieliński, M. Lipiński, M. Juda, M. Zeppelzauer, and P. Dłotko, “Persistence Bag-of-Words for Topological Data Analysis,” Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), pp. 4489–4495, 2019.
T. K. Dey, M. Juda, T. Kapela, J. Kubica, M. Lipiński, and M. Mrozek, “Persistent Homology of Morse Decompositions in Combinatorial Dynamics,” SIAM Journal of Applied Dynamical Systems, vol. 18, no. 1, pp. 510–530, 2019.
Peer review invitations:
Discrete and Continuous Dynamical Systems
Journal of Applied and Computational Topology
Journal of Computational Dynamics
Journal of Differential Equations
Journal of Machine Learning Research
Topological Methods in Nonlinear Analysis
33rd International Computational Geometry Media Exposition (CG:ME) at SoCG 2024
zbMath Open
Some of my recent talks (with slides):
"Conley-Morse persistence barcodes: a homological signature of a combinatorial bifurcation", DyToComp 2025, Będlewo, Poland (pdf slides)
"What does Multivector Field Theory have to offer?", ICIAM 2023, Tokyo, Japan (keynote slides, pdf slides)
"Dynamics reconstruction from finite sample", ECMI 2023, Wrocław, Poland (slides)
"Tracking Dynamical Features via Continuation and Persistence", Computational Persistence Workshop 2022, Purdue University (slides)
"Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces", Oxford Applied Topology Seminar 2020 (slides)