The Big Bang was the initiation of the continuing expansion of the universe from a state of high density and temperature (its central singularity).[1] It was first proposed as a physical theory in 1931 by Roman Catholic priest and physicist Georges Lematre when he suggested the universe emerged from a "primeval atom". Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form.[2][3][4] These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

Our understanding of the universe back to very early times suggests that there is a past horizon, though in practice our view is also limited by the opacity of the universe at early times. So our view cannot extend further backward in time, though the horizon recedes in space. If the expansion of the universe continues to accelerate, there is a future horizon as well.[16]


Mdu Aka Trp Bang Mp3 Download


DOWNLOAD 🔥 https://tlniurl.com/2yGAvC 🔥



Some processes in the early universe occurred too slowly, compared to the expansion rate of the universe, to reach approximate thermodynamic equilibrium. Others were fast enough to reach thermalization. The parameter usually used to find out whether a process in the very early universe has reached thermal equilibrium is the ratio between the rate of the process (usually rate of collisions between particles) and the Hubble parameter. The larger the ratio, the more time particles had to thermalize before they were too far away from each other.[17]

In the absence of a perfect cosmological principle, extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past.[18] This irregular behavior, known as the gravitational singularity, indicates that general relativity is not an adequate description of the laws of physics in this regime. Models based on general relativity alone cannot fully extrapolate toward the singularity.[5] In some proposals, such as the emergent Universe models, the singularity is replaced by another cosmological epoch. A different approach identifies the initial singularity as a singularity predicted by some models of the Big Bang theory to have existed before the Big Bang event.[19][clarification needed]

A few minutes into the expansion, when the temperature was about a billion kelvin and the density of matter in the universe was comparable to the current density of Earth's atmosphere, neutrons combined with protons to form the universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis (BBN).[34] Most protons remained uncombined as hydrogen nuclei.[35]

As the universe cooled, the rest energy density of matter came to gravitationally dominate that of the photon radiation. The recombination epoch began after about 379,000 years, when the electrons and nuclei combined into atoms (mostly hydrogen), which were able to emit radiation. This relic radiation, which continued through space largely unimpeded, is known as the cosmic microwave background.[35]

After the recombination epoch, the slightly denser regions of the uniformly distributed matter gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures observable today.[1] The details of this process depend on the amount and type of matter in the universe. The four possible types of matter are known as cold dark matter (CDM), warm dark matter, hot dark matter, and baryonic matter. The best measurements available, from the Wilkinson Microwave Anisotropy Probe (WMAP), show that the data is well-fit by a Lambda-CDM model in which dark matter is assumed to be cold. (Warm dark matter is ruled out by early reionization.)[37] This CDM is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%.[38]

In an "extended model" which includes hot dark matter in the form of neutrinos,[39] then the "physical baryon density"  b h 2 {\displaystyle \Omega _{\text{b}}h^{2}} is estimated at 0.023. (This is different from the 'baryon density'  b {\displaystyle \Omega _{\text{b}}} expressed as a fraction of the total matter/energy density, which is about 0.046.) The corresponding cold dark matter density  c h 2 {\displaystyle \Omega _{\text{c}}h^{2}} is about 0.11, and the corresponding neutrino density  v h 2 {\displaystyle \Omega _{\text{v}}h^{2}} is estimated to be less than 0.0062.[38]

Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which appears to homogeneously permeate all of space. Observations suggest that 73% of the total energy density of the present day universe is in this form. When the universe was very young it was likely infused with dark energy, but with everything closer together, gravity predominated, braking the expansion. Eventually, after billions of years of expansion, the declining density of matter relative to the density of dark energy allowed the expansion of the universe to begin to accelerate.[9]

Dark energy in its simplest formulation is modeled by a cosmological constant term in Einstein field equations of general relativity, but its composition and mechanism are unknown. More generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both through observation and theory.[9]

English astronomer Fred Hoyle is credited with coining the term "Big Bang" during a talk for a March 1949 BBC Radio broadcast,[41] saying: "These theories were based on the hypothesis that all the matter in the universe was created in one big bang at a particular time in the remote past."[42][43] However, it did not catch on until the 1970s.[43]

It is popularly reported that Hoyle, who favored an alternative "steady-state" cosmological model, intended this to be pejorative,[44][45][46] but Hoyle explicitly denied this and said it was just a striking image meant to highlight the difference between the two models.[47][48][50] Helge Kragh writes that the evidence for the claim that it was meant as a pejorative is "unconvincing", and mentions a number of indications that it was not a pejorative.[43]

The term itself has been argued to be a misnomer because it evokes an explosion.[43][51] The argument is that whereas an explosion suggests expansion into a surrounding space, the Big Bang only describes the intrinsic expansion of the contents of the universe.[52][53] Another issue pointed out by Santhosh Mathew is that bang implies sound, which is not an important feature of the model.[45] An attempt to find a more suitable alternative was not successful.[43][46]

The Big Bang models developed from observations of the structure of the universe and from theoretical considerations. In 1912, Vesto Slipher measured the first Doppler shift of a "spiral nebula" (spiral nebula is the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way.[56][57] Ten years later, Alexander Friedmann, a Russian cosmologist and mathematician, derived the Friedmann equations from the Einstein field equations, showing that the universe might be expanding in contrast to the static universe model advocated by Albert Einstein at that time.[58]

Independently deriving Friedmann's equations in 1927, Georges Lematre, a Belgian physicist and Roman Catholic priest, proposed that the recession of the nebulae was due to the expansion of the universe.[61] He inferred the relation that Hubble would later observe, given the cosmological principle.[9] In 1931, Lematre went further and suggested that the evident expansion of the universe, if projected back in time, meant that the further in the past the smaller the universe was, until at some finite time in the past all the mass of the universe was concentrated into a single point, a "primeval atom" where and when the fabric of time and space came into existence.[62]

In the 1920s and 1930s, almost every major cosmologist preferred an eternal steady-state universe, and several complained that the beginning of time implied by the Big Bang imported religious concepts into physics; this objection was later repeated by supporters of the steady-state theory.[63] This perception was enhanced by the fact that the originator of the Big Bang concept, Lematre, was a Roman Catholic priest.[64] Arthur Eddington agreed with Aristotle that the universe did not have a beginning in time, viz., that matter is eternal. A beginning in time was "repugnant" to him.[65][66] Lematre, however, disagreed:

If the world has begun with a single quantum, the notions of space and time would altogether fail to have any meaning at the beginning; they would only begin to have a sensible meaning when the original quantum had been divided into a sufficient number of quanta. If this suggestion is correct, the beginning of the world happened a little before the beginning of space and time.[67]

During the 1930s, other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model,[68] the oscillatory universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard C. Tolman)[69] and Fritz Zwicky's tired light hypothesis.[70] 152ee80cbc

fire emblem the four kings download

love my own football full song download mp3

download meetme latest version