Research

Tuning Self-Organization of Active Particles Under Confinement: We consider the collective dynamics of self-propelling particles in two dimensions. They can align themselves according to the direction of propulsion of their neighbours, together with small rotational fluctuations. They also interact with each other via soft, isotropic, repulsive potentials. The particles are confined in a circular trap. The steepness of the trap is tuneable. The average packing fraction of the particles is low. When the trap is steep, particles flock along its boundary. They form a polar cluster that spreads over the boundary. The cluster is not spatially ordered. We show that when the steepness is decreased beyond a threshold value, the cluster becomes round and compact, and eventually spatial order (hexagonal) emerges in addition to the pre-established polar order. We investigate the kinetics of such ordering. We find that while rotating around the centre of the trap along its circular boundary, the cluster needs to roll around its center of mass to be spatially ordered. We have studied the stability of the order when the trap is suddenly switched off. We find that for the particles with velocity alignment interaction, the decay of the spatial order is much slower than the particles without the alignment interaction

     Hexagonally Ordered Configuration

Re-Entrance of No Lane In Presence Of Inter-Particle Friction : We study the binary suspension of rough, circular particles in two dimensions under athermal conditions. The suspension is subject to a time-independent external drive in response to which half of the particles are pulled along the field direction, whereas the other half is pushed in the opposite direction. Simulating the system with different magnitude of external drive in steady state, we obtain oppositely moving macroscopic lanes only for a moderate range of external drive. Below as well as above the range we obtain states with no lane. Hence we find that the no-lane state reenters along the axis of the external drive in the nonequilibrium phase diagram corresponding to the laning transition, with varying roughness of individual particles and external drive. Interparticle friction (contact dissipation) due to the roughness of the individual particle is the main player behind the reentrance of the no-lane state at high external drives.

(a) The heat map of the lane order parameter. [(b)–(d)] Typical configurations with increasing magnitude of external drive Fext , shown by the long black arrow at the bottom. Red and blue colors of the particles indicate particles moving in the + ˆx and −ˆx directions, respectively.     ---------------------------------->