On computational and theoretical aspects of Dynamical Systems with some hyperbolicity
Computational proofs of the existence of blenders
Ergodic theory for partially hyperbolic endomorphisms
PhD thesis: Regularity of foliations and rigidity for Anosov endomorphisms.
Master monograph: Periodic billiard orbits in obtuse triangles (in Portuguese).
Tese de doutorado: Regularidade de folheações e rigidez para endomorfismos de Anosov (em inglês).
Dissertação de mestrado: Órbitas bilhares periódicas em triângulos obtusos.
Cantarino, M. and Varão, R. Anosov endomorphisms on the two-Torus: Regularity of foliations and rigidity. Nonlinearity 36, 10 (sep 2023). https://doi.org/10.1088/1361-6544/acf267
Álvarez, C. F. and Cantarino, M. Equilibrium states for partially hyperbolic maps with one-dimensional center. Journal of Statistical Physics (2023). https://doi.org/10.1007/s10955-023-03206-3 | Read-only version
Cantarino, M. and Varão, R. and Silva S. T. Holonomies for foliations with extreme disintegration behavior. Stochastics and Dynamics (2024). https://doi.org/10.1142/S0219493724500242.
Cantarino, M. and Santiago, B. U-Gibbs measure rigidity for partially hyperbolic endomorphisms on surfaces. (Jul 2024).