Preprints
Articles in Journals
LOUZEIRO, MAURICIO S.; SILVA, GILSON N. ; YUAN, JINYUN ; ZHANG, DAOPING . An Adaptive Cubic Regularization Inexact-Newton Method on Riemannian Manifolds. JOURNAL OF SCIENTIFIC COMPUTING, v. 105, p. 69, 2025.
LOUZEIRO, MAURICIO S.; SILVA, GILSON N. ; YUAN, JINYUN ; ZHANG, DAOPING . Inexact Newton Methods for Solving Generalized Equations on Riemannian Manifolds. JOURNAL OF SCIENTIFIC COMPUTING, v. 103, p. 67, 2025.
SILVA LOUZEIRO, MAURÍCIO; BERGMANN, RONNY; HERZOG, ROLAND. Fenchel Duality and a Separation Theorem on Hadamard Manifolds. SIAM JOURNAL ON OPTIMIZATION, v. 32, p. 854–873, 2022.
LOUZEIRO, MAURICIO; KAWAN, CHRISTOPH; HAFSTEIN, SIGURDUR; GIESL, PETER; YUAN, JINYUN. A Projected Subgradient Method for the Computation of Adapted Metrics for Dynamical Systems. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, v. 21, p. 2610–2641, 2022.
BERGMANN, RONNY; HERZOG, ROLAND; SILVA LOUZEIRO, MAURÍCIO; TENBRINCK, DANIEL; VIDAL-NÚÑEZ, JOSÉ. Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, v. 21, p. 1465–1504, 2021.
FERREIRA, O. P.; LOUZEIRO, M. S.; PRUDENTE, L. F. . Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature. OPTIMIZATION, v. 68, p. 713–729, 2019.
FERREIRA, O. P.; LOUZEIRO, M. S.; PRUDENTE, L. F. . Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature. SIAM JOURNAL ON OPTIMIZATION, v. 29, p. 2517-2541, 2019.
FERREIRA, ORIZON P.; LOUZEIRO, MAURICIO S.; PRUDENTE, LEANDRO F. . Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, v. 184, p. 507–533, 2019.
FERREIRA, ORIZON P.; LOUZEIRO, MAURÍCIO S.; PRUDENTE, LEANDRO F. . First Order Methods for Optimization on Riemannian Manifolds. Handbook of Variational Methods for Nonlinear Geometric Data. 1ed.: Springer International Publishing, 2020, v., p. 499–525.
Other publications
Ph. D. Thesis: Mauricio Silva Louzeiro. Optimization methods on Riemannian manifolds with lower bounded curvature: gradient for scalar and multi-objective functions and subgradient for scalar functions, 2019. Prêmio Capes de Tese (Menção Honrosa) 2020.
Advisors: Orizon Pereira Ferreira and Leandro Fonseca Prudente.
Master Thesis (in portuguese): Mauricio Silva Louzeiro. Método de Newton para encontrar zeros de uma classe especial de funções semi-suaves, 2016.
Advisor: Orizon Pereira Ferreira.