Publications
Preprints
van der Steen, B., Gralka, M., Mulla, Y. (2024) Rapid resistance evolution against phage cocktails. bioRxiv link
Gregor, R., Szabo, R. E., Vercelli, G. T., Gralka, M., Reynolds, R., Qu, E. B., Levine, N. M. & Cordero, O. X. (2023). Widespread B-vitamin auxotrophy in marine particle-associated bacteria. bioRxiv link
Somee, M.R., Gonzalez-Rosales, C., Gralka, M., Turner, S., Bertilsson, S., Dopson, M., Mehrshad, M. (2024) Cross-feeding options define eco-evolutionary dynamics of deep oligotrophic groundwater microbiome. bioRxiv link
Published
Gralka, M., Pollak, S., Cordero, O. X. (2023) Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nature Microbiology 8, 1799–1808 link
Highlighted in Nature Microbiology: "Constraints on microbial metabolic complexity"
Gralka, M. (2023) Searching for Principles of Microbial Ecology Across Levels of Biological Organization. Integrative and Comparative Biology, icad060, link
Le Gland, G., Masdeu‐Navarro, M., Galí, M., Vallina, S.M., Gralka, M., Vincent, F., Cordero, O., Vardi, A. and Simó, R., (2023) Biological sources and sinks of dimethylsulfide disentangled by an induced bloom experiment and a numerical model. Limnology and Oceanography link
Iffland-Stettner, A., Okano, H., Gralka, M., Guessous, G., Amarnath, K., Cordero O. X., Hwa, T., Bonhoeffer, S. (2023) Genome-Scale Metabolic Model of Marine Heterotroph Vibrio splendidus sp. 1A01. Msystems 8.2: e00377-22. link
[Vincent, F., Gralka, M.]*, Schleyer, G., Schatz, D., Cabrera-Brufau, M., Kuhlisch, C., Sichert, A., Vidal-Melgosa, S., Mayers, K., Barak-Gavish, N., Michel Flores, J., Masdeu-Navarro, M., Egge, J.K., Larsen, A., Heheman, J., Marrasé, C., Simó, R., Cordero, O. X., Vardi, A. (2023) Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during algal blooms. Nature Communications 14, 510 link (*=equal contribution)
Highlighted in Nature Reviews Microbiology: "Balancing the bloom"
[Pollak, S., Gralka, M.]*, Sato, Y., Schwartzman, J., Lu, L. & Cordero, O. X. (2021) Public good exploitation in natural bacterioplankton communities. Science Advances Vol. 7, no. 31, eabi4717 link (*=equal contribution)
Gralka, M., Szabo, R., Stocker, R., & Cordero, O. X. (2020) Trophic Interactions and the Drivers of Microbial Community Assembly, Current Biology, 30, R1176–R1188 link
Bittleston, L. S., Gralka, M., Leventhal, G. E., Mizrahi I. & Cordero O. X. (2020) Context-dependent dynamics lead to the assembly of functionally distinct microbial communities, Nature Communications 11:1440 link
Doctoral work
Yu, Q., Gralka, M., Duvernoy, M., Sousa, M., Harpak, A., & Hallatschek, O. (2021) The mutability of demographic noise in microbial range expansions. ISMEJ link
Gralka, M. & Hallatschek, O. (2019). Environmental heterogeneity can tip the population genetics of range expansions. eLife, 8, e44359. link
eLife digest "In the right place at the right time"
Kayser, J., Schreck, C. F., Gralka, M., Fusco, D. & Hallatschek, O. (2019) Collective motion conceals fitness differences in crowded cellular populations. Nature ecology & evolution, 3(1), 125. [* = equal contribution] link pdf
Nature Physics Research Highlight "Fighting fit"
Kayser, J., Schreck, C. F., Yu, Q., Gralka, M., Hallatschek, O. (2018) Emergence of evolutionary driving forces in pattern-forming microbial populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1747), 20170106. link pdf
Gralka, M., Fusco, D., Martis, S., & Hallatschek, O. (2017). Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients. Physical Biology, 14(2), 045011. link pdf
Farrell, F. F., Gralka, M., Hallatschek, O., & Waclaw, B. (2017). Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations. Journal of The Royal Society Interface, 14, 20170073. link pdf
Fusco, D., Gralka, M., Kayser, J., Anderson, A., & Hallatschek, O. (2016). Excess of mutational jackpot events in expanding populations revealed by spatial Luria-Delbruck experiments. Nature communications, 7:12760. link pdf
Gralka, M., Fusco, D., & Hallatschek, O. (2016). Watching Populations Melt Down. Biophysical Journal, 111(2), 271-272. link pdf
Gralka, M., Stiewe, F., Farrell, F., Moebius, W., Waclaw, B., & Hallatschek, O. (2016). Allele surfing promotes microbial adaptation from standing variation. Ecology Letters, 19(8), 889-898. link pdf
Earlier work
Gralka, M., & Kroy, K. (2015). Inelastic mechanics: a unifying principle in biomechanics. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(11), 3025-3037. link pdf
Introduction to evolution in microbial colonies
When I started my PhD there was virtually no systematic literature about evolutionary dynamics in microbial colonies, and there seemed to be no books or courses that were helpful in answering even the most basic questions. What do we gain from studying evolution in microbial colonies? What mathematical models are commonly used to describe evolutionary dynamics in colonies?
To remedy this situation, I organized my thesis introduction to give new researchers in the field a broad overview over some of the relevant experimental and theoretical concepts, starting with a basic introduction into microbes and evolution, and ending with a detailed discussion of mathematical models used to describe the growth of and evolutionary dynamics in spatially expanding populations (such as microbial colonies).
Read it here: Thesis introduction