Toward Integration of Behavioral Ecology and Cognitive Neuroscience
Contact information of Toshiya Matsushima
matusima@sci.hokudai.ac.jp Hokkaido Univ, Faculty of Science (emeritus professor)
matusima@hoku-iryo-u.ac.jp Health Sciences University of Hokkaido (visiting scientist)
Research Map
https://researchmap.jp/toshiyamatsushima
Research Carreer
1986-1989 University of Tokyo, Zoological Institute (Assistant Prof)
1989-1990 University of Bremen (A.v.Humboldt Foundation, Post Doc)
1990-1992 Karolinska Institute (Swedish Institute, Post Doc)
1992-1995 Sofia University (Research Associate, Assistant Professor)
1995-2005 Nagoya University (Associate Professor)
2006-2022 Hokkaido University (Associate/Full Professor)
2024-2025 Hokkaido University, School of Veterinary Medicine (Visiting Scientist)
2019-2024 University of Trento, CIMeC (Visiting Professor/Scientist)
2022- Hokkaido University (Emeritus Professor)
2022- Health Sciences University of Hokkaido (Visiting Scientist)
Research Interests
Evolution of brain and behaviour
Neuroeconomics in chicks
Imprinting as an animal model of ASD (autism spectrum disorder)
Biological basis of numerousity and arithmetic
Articles and Books in Japanese
書籍
「動物に心はあるだろうか? はじめての動物行動学」(2013年 朝日学生新聞社)
「行動生物学辞典」(2013年 東京化学同人、共編著)
「オールコック・ルーベンスタイン 動物行動学」(2021年 丸善出版、共訳)
「動物の行動と心の事典」(2025年 朝倉書店、項目執筆「意思決定」「刷り込みの解剖学」)
総説記事
「夜明け前」(2003年 比較生理生化学会誌)
「ヒヨコの経済学」(2005年 認知科学)
「動物にとって理(ことわり)とは何か」(2009年 「動物は何を考えているのか」共立出版より)
「競争・同調・社会的促進」(2012年 計測と制御 計測自動制御学会誌)
「リスク感受性の生態学」(2013年 Clinical Neuroscience 中外医学社)
「経済と社会の原基:価値をめぐって」(2017年 日本比較内分泌学会誌)
updated on 28 October 2025
List of Publications (original research articles, reviews and commentaries)
2021 - present
105. Matsushima T. (2025) Is 'number sense' a sense? eLife (https://doi.org/10.7554/eLife.108701): insight article related to "Prenatal light exposure affects number sense and the mental number line in young domestic chicks" by Rugani, Maccchinizzi Zhang and Regolin eLife (https://doi.org/10.7554/eLife.106356.3)
104. Matsushima T., Toji N., Wada K., Shikanai H., Izumi T. (2025) Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon. Cerebral Cortex 35: bhaf044 (https://doi.org/10.1093/cercor/bhaf044)
103. Matsushima T. (2025) Born to count: a biological basis of mathematics. Commentary to the feature article by Lorenzi et al. (2025) Is there an innate sense of number in the brain? Cerebral Cortex (https://doi.org/10.1093/cercor/bhaf023)
102. Ogura Y., Kawamori A., Matsushima T. (2025) Chicks make stochastic decisions based on gain rates of different time constants. Behavioural Processes 224: 105134 (https://doi.org/10.1016/j.beproc.2024.105134)
101. Matsushima T., Izumi T., Vallortigara G. (2024) The domestic chick as an animal model of autism spectrum disorder (ASD): Building adaptive social perceptions through prenatally formed predispositions. Frontiers in Neuroscience (https://doi.org/10.3389/fnins.2024.1279947)
100. Serizawa S., Aoki N., Mori C., Fujita T., Yamaguchi S., Matsushima T., Homma K.-J. (2023) Temporal hampering of thyroid hormone synthesis just before hatching impeded the filial imprinting in domestic chicks. Frontiers in Physiology (https://doi.org/10.3389/fphys.2023.1084816)
99. Matsushima T., Miura M., Patzke N., Toji N., Wada, K., Ogura, Y., Homma, K.-J., Sgado P., Vallortigara, G. (2022) Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cerebral Cortex Communications (https://doi.org/10.1093/texcom/tgac041)
98. Csillag A., Matsushima T. (2022) Editorial: Neural mechanisms of cognitive control and emotion in birds. Frontiers in Physiology (https://doi.org/10.3389/fphys.2022.1028103)
97. Saheki Y., Aoki N., Homma K.-J., Matsushima T. (2022) Suppressive modulation of the chick forebrain network for imprinting by thyroid hormone: an in vitro study. Frontiers in Physiology (https://doi.org/10.3389/fphys.2022.881947)
96. Fujita T., Aoki N., Mori C., Fujita E., Matsushima T., Homma K.-J., Yamaguchi S. (2022) Serotonergic neurons in the chick brainstem express various serotonin receptor subfamily genes. Frontiers in Physiology (https://doi.org/10.3389/fphys.2021.815997)
95. Fujita T., Aoki N., Mori C., Fujita E., Matsushima T., Homma K.-J., Yamaguchi S. (2022) Chick hippocampal formation displays subdivision- and layer-selective expression patterns of serotonin receptor subfamily genes. Frontiers in Physiology (https://doi.org/10.3389/fphys.2022.882633)
94. Aoki N., Mori C., Fujita T., Serizawa S., Yamaguchi S., Matsushima T., Homma K.-J. (2022) Imprintability of newly hatched domestic chicks in an artifact object: a novel high time-resolution apparatus based on a running disc. Frontiers in Physiology (https://doi.org/10.3389/fphys.2022.822638)
93. Mori C., Aoki N., Fujita T., Yamaguchi S., Matsushima T., Homma K.-J. (2022) Gene expression profiles of the muscarinic acetylcholine receptors in brain regions relating to filial imprinting of newly-hatched domestic chicks. Behavioural Brain Research (https://doi.org/10.1016/j.bbr.2021.113708)
92. Matsushima T., Kawamori A., Ogura Y. (2021) Construction of Roman roads toward Neuroeconomics Commentary to the book “Vigor: Neuroeconomics of movement control” (by Shadmehr R. and Ahmed A. A.) Behavioral and Brain Sciences (https://doi.org/10.1017/S0140525X21000303)
91. Lorenzi E., Lemaire B.S., Versace E., Matsushima T., Vallortigara G. (2021) Resurgence of an inborn attraction for animate objects via thyroid hormone T3. Frontiers in Behavioral Neuroscience (https://doi.org/10.3389/fnbeh.2021.675994)
90. Zucca P., Rossmann M.-C., Dodic M., Ramma Y., Matsushima T., Seet S., Holtze S., Bremini A., Fischinger I., Morosetti G., Sitzia M., Furlani R., Greco O., Meddi G., Zambotto1P., Meo F., Pulcini1 S., Palei M., Zamaro G. (2021) What do adolescents know about One-Health and Zoonotic risks? A school-based survey in Italy, Austria, Germany, Slovenia, Mauritius and Japan. Frontiers in Public Health (https://doi.org/10.3389/fpubh.2021.658876)
2011 - 2020
89. Miura M., Nishi D., Matsushima T. (2020) Combined predisposed preferences for colour and biological motion make robust development of social attachment through imprinting. Animal Cognition 23: 169-188 (https://doi.org/10.1007/s10071-019-01327-5)
88. Aoki N., Fujita T., Mori C., Fujita E., Yamaguchi S., Matsushima T., Homma K.-J. (2020) Blockade of muscarinic acetylcholine receptor by scopolamine impairs the memory formation of filial imprinting in domestic chicks (Gallus gallus domesticus). Behavioural Brain Research 379: 112291 (https://doi.org/10.1016/j.bbr.2019.112291)
87. Fujita T., Aoki N., Fujita E., Matsushima T., Homma K.J., Yamaguchi S. (2019) The chick pallium displays divergent expression patterns of chick orthologues of mammalian neocortical deep layer-specific genes. Scientific Reports 9: 20400 (https://doi.org/10.1038/s41598-019-56960-4)
86. Matsushima T., Amita H., Ogura Y. (2018) Complex social ecology needs complex machineries of foraging. Commentary to the review article “How foraging works: uncertainty magnifies food-seeking motivation” (by Anselme P. and Güntürkün O.) Behavioral and Brain Sciences 42:e45 (https://doi.org/10.1017/S0140525X18002078)
85. Aoki, N., Yamaguchi, S., Matsushima, T., Homma, K.-J. (2018) GABA-A and GABA-B receptors in filial imprinting linked with opening and closing of the sensitive period in domestic chicks (Gallus gallus domesticus). Frontiers in Physiology (Avian Physiology) (https://doi.org/10.3389/fphys.2018.01837)
84. Miura, M., Aoki, N., Yamaguchi, S., Homma, K.-J. Matsushima, T., (2018) Thyroid hormone sensitizes the imprinting-associated induction of biological motion preference in domestic chicks. Frontiers in Physiology (Avian Physiology) 9:1740 (https://doi.org/10.3389/fphys.2018.01740)
83. Ogura, Y. Amita, H., Matsushima, T., (2018) Ecological validity of impulsive choice: consequences of profitability-based short-sighted evaluation in the producer-scrounger game. Frontiers in Applied Mathematics and Statistics, 4:49 (https://doi.org/10.3389/fams.2018.00049)
82. Yamaguchi, S., Aoki, N., Matsushima, T., Homma, K.-J. (2018) Wnt-2b in the intermediate hyperpallium apicale of the telencephalon is critical for the thyroid hormone-mediated opening of the sensitive period for filial imprinting in domestic chicks (Gallus gallus domesticus). Hormone and Behavior 102: 120-128 (https://doi.org/10.1016/j.yhbeh.2018.05.011)
81. Takemura, Y., Yamaguchi, S., Aoki, N., Miura M., Homma, K.-J., Matsushima, T. (2018) Gene expression of Dio2 (thyroid hormone converting enzyme) in telencephalon is linked with predisposed biological motion preference in domestic chicks. Behavioural Brain Research 349: 25-30 (https://doi.org/10.1016/j.bbr.2018.04.03)
80. Xin, Q., Ogura, Y., Matsushima, T. (2017) Four eyes match better than two: Sharing of precise patch-use time among socially foraging domestic chicks. Behavioural Processes 140: 127-132 (https://doi.org/10.1016/j.beproc.2017.04.020)
79. Yamaguchi, S., Hayase, S., Aoki, N., Takehara, A., Ishigohoka, J., Matsushima, T., Wada, K., Homma, K.-J. (2017) Sex differences in brain thyroid hormone levels during early post-hatching development in zebra finch (Taeniopygia guttata). Plos One (https://doi.org/10.1371/journal.pone.0169643)
78. Xin, Q., Ogura, Y., Uno, L., Matsushima, T. (2017) Selective contribution of the telencephalic arcopallium to the social facilitation of foraging efforts in the domestic chicks. European Journal of Neuroscience 45: 365-380 (https://doi.org/10.1111/ejn.13475)
77. Wen, C., Ogura, Y., Matsushima, T. (2016) Striatal and tegmental neurons code critical signals for temporal-difference learning of state value in domestic chicks. Frontiers in Neuroscience (Decision Neuroscience) (https://doi.org/10.3389/fnins.2016.00476)
76. Mizuyama, R., Uno, L., Matsushima, T. (2016) Food variance and temporal discounting in socially foraging chicks. Animal Behaviour 120: 143-151 (https://doi.org/10.1016/j.anbehav.2016.07.032)
75. Miura, M., Matsushima, T. (2016) Biological motion facilitates imprinting. Animal Behaviour 116: 171-180 (https://doi.org/10.1016/j.anbehav.2016.03.025)
74. Yamaguchi, S., Aoki, N., Takehara, A., Mori, M., Kanai, A., Matsushima, T., Homma, K.-J. (2016) Involvement of nucleotide diphosphate kinase 2 in the reopening of the sensitive period of filial imprinting. Neuroscience Letters 612: 32-37 (https://doi.org/10.1016/j.neulet.2015.12.004)
73. Tsutsui-Kimura, I., Ohmura, Y., Izumi, T., Matsushima, T., Amita, H., Yoshida, T., Yoshioka, M. (2015) Neuronal codes for the inhibitory control of impulsive actions in the rat infralimbic cortex. Behavioural Brain Research 296: 361-372 (https://doi.org/10.1016/j.bbr.2015.08.025)
72. Aoki, N., Yamaguchi, S., Kitajima, T., Takehara, A., Katagiri-Nakagawa, S., Matsui, R., Watanabe, D., Matsushima, T., Homma, K.-J., (2015) Critical role of the neural pathway from the intermediate medial mesopallium to the intermediate hyperpallium apicale in filial imprinting of domestic chicks (Gallus gallus domesticus). Neuroscience 308: 115-124 (https://doi.org/10.1016/j.neuroscience.2015.09.014)
71. Ogura, Y., Izumi, T., Yoshioka, M., Matsushima, T. (2015) Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick. Behavioural Brain Research 294: 162-176 (https://doi.org/10.1016/j.bbr.2015.07.052)
70. Amita, H., Matsushima T. (2014) Competitor suppresses neuronal representation of food reward in the nucleus accumbens / medial striatum of domestic chicks. Behavioural Brain Research 268: 139-149 (https://doi.org/10.1016/j.bbr.2014.04.004)
69. Kawamori, A., Matsushima, T. (2012) Sympatric divergence of risk sensitivity and diet menus in three species of tit. Animal Behaviour 84: 1001-1012 (https://doi.org/10.1016/j.anbehav.2012.07.026)
68. Yamaguchi, S., Aoki, N., Kitajima, T., Iikubo, E., Katagiri, S., Matsushima, T., Homma, K.J. (2012) Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning. Nature Communications 3:1081 (https://doi.org/10.1038/ncomms2088)
67. Matsunami, S., Ogura, Y., Amita, H., Izumi, T., Yoshioka, M., Matsushima, T. (2012) Behavioural and pharmacological effects of fluvoxamine on decision-making in food patches and the inter-temporal choices of domestic chicks. Behavioural Brain Research 233: 577-586 (https://doi.org/10.1016/j.bbr.2012.05.045)
66. Miura, M., Matsushima, T. (2012) Preference for biological motion in domestic chicks: sex-dependent effect of early visual experience. Animal Cognition 15: 871-879 (https://doi.org/10.1007/s10071-012-0514-x)
65. Yamaguchi, S., Aoki, N., Kobayashi, D., Kitajima, T., Iikubo, E., Katagiri, S., Matsushima, T., Homma, K.-J. (2011) Activation of brain-derived neurotrophic factor (BDNF)/TrkB signaling accompanying filial imprinting in domestic chicks (Gallus gallus domesticus). NeuroReport 22: 929-934 (https://doi.org/10.1097/WNR.0b013e32834d0be7)
64. Ogura, Y., Matsushima, T. (2011) Social facilitation revisited: increase in foraging efforts and synchronization of running in domestic chicks. Frontiers in Neuroscience 5: article 91 (pp.1-12) (https://doi.org/10.3389/fnins.2011.00091)
63. Amita, H., Matsushima, T. (2011) Instantaneous and cumulative influences of competition on impulsive choices in domestic chicks. Frontiers in Neuroscience 5: article 101 (pp.1-8) (https://doi.org/10.3389/fnins.2011.00101)
2001 - 2010
62. Yamaguchi, S., Katagiri, S., Aoki, N., Iikubo E., Kitajima, T., Matsushima, T., Homma, K.-J. (2010) Molecular function of microtubule-associated protein 2 for filial imprinting in domestic chicks (Gallus gallus domesticus). Neuroscience Research 69: 32-40
61. Yamaguchi, S., Fujii-Taira, I., Hirose N., Kitajima, T., Katagiri, S., Kawamori, A., Matsushima, T., Homma, K.-J. (2010) Bioluminescence imaging of c-fos gene expression accompanying filial imprinting in the newly hatched chick brain. Neuroscience Research 67: 192-195
60. Amita, H., Kawamori, A., Matsushima, T. (2010) Social influences of competition on impulsive choices in domestic chicks. Biology Letters 6: 183-186
59. Kawamori, A., Matsushima, T. (2010) Subjective value of risky foods for individual domestic chicks: a hierarchical Bayesian model. Animal Cognition, 13: 431-441
58. Yamaguchi, S., Fujii-Taira, I., Murakami, A., Hirose, N., Aoki, N., Izawa, E.-I., Fujimoto, Y., Takano, T., Matsushima, T., and Homma, K.J. (2008) Upregulation of microtubule-associated protein 2 accompanied by the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Research Bulletin 76: 282-288
57. Yamaguchi, S., Fujii-Taira, I., Katagiri, S., Izawa, E.-I., Fujimoto, Y., Takeuchi, H., Takano, T., Matsushima, T., and Homma, K.J. (2008) Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Research Bulletin 76: 275-281
56. Matsushima, T., Kawamori, A., and Bem-Sojka T. (2008) Neuro-economics in chicks: foraging choices based on delay, cost and risk. Brain Research Bulletin 76: 245-252
55. Yamaguchi, S., Katagiri, S., Hirose, N., Fujimoto, Y., Mori, M., Fujii-Taira, I., Takano, T., Matsushima, T., and Homma, K. (2007) In-vivo gene transfer into newly hatched chick brain by electroporation. NeuroReport 18: 735-739
54. Aoki, N., Csillag, A., and Matsushima, T. (2006) Localized lesion of arcopallium intermedium of the lateral forebrain affected the choice of costly food reward without impairing reward-amount discrimination in the domestic chick. European Journal of Neuroscience 24: 2314-2326.
53. Aoki, N., Suzuki, R., Izawa, E.-I., Csillag, A., and Matsushima, T. (2006) Localized lesions of the ventral striatum, but not the arcopallium, enhanced impulsiveness in the choice based on anticipated spatial proximity of food rewards. Behavioural Brain Research 168: 1-12.
52. Matsushima T. (2005) Selection pressure on the decision-making process in conflict. Commentary to the review article entitled as Survival with an asymmetric brain: advantages and disadvantages of cerebral lateralization” (by Vallortigara G. and Rogers L.J.) Behavioral and Brain Sciences 28: 604-605.
51. Izawa, E.-I., Aoki, N., and Matsushima T. (2005) Neural correlates of the proximity and quantity of anticipated food rewards in the ventral striatum. European Journal of Neuroscience 22: 1502-1512.
50. Ichikawa, Y., Izawa, E.-I., and Matsushima, T. (2004) Excitotoxic lesions of the medial striatum delay extinction of a reinforcement color discrimination operant task in domestic chicks; a functional role of reward anticipation. Cognitive Brain Research 22: 76-83.
49. Ichihashi, T., Ichikawa, Y., and Matsushima, T. (2004) A non-social and isolate rearing condition induces an irreversible shift toward continued fights in the male fighting fish (Betta splendens). Zoological Science 21: 723-729.
48. Nakajima, S., Izawa, E.-I., and Matsushima, T. (2003) Hippocampal lesion delays the acquisition of egocentric spatial memory in chicks. NeuroReport 14: 1475-1780.
47. Aoki, N., Izawa, E.-I., Yanagihara, S., and Matsushima, T. (2003) Neural correlates of memorized associations and cued movements in archistriatum of the domestic chick. European Journal of Neuroscience 17: 1935-1946.
46. Matsushima, T., Izawa, E.-I., Aoki, N., Yanagihara, S. (2003) The mind through chick eyes: memory, cognition and anticipation. Zoological Science 20: 395-408.
45. Izawa, E.-I., Zachar, G., Yanagihara, S., and Matsushima, T. (2003) Localized lesion of caudal part of lobus parolfactorius caused impulsive choice in the domestic chick: evolutionarily conserved function of ventral striatum. Journal of Neuroscience 23: 1894-1902.
44. Izawa, E.-I., Zachar, G., Aoki, N., Koga, K., and Matsushima, T. (2002) Lesions of the ventro-medial basal ganglia impair reinforcement learning while sparing the recall of memorized color discrimination in domestic chicks. Behavioral Brain Research 136: 405-414.
43. Mori, M. and Matsushima, T. (2002) Post-hatch development of dendritic arborization in cerebellar Purkinje neurons of quail chicks: a Morphometric study. Neuroscience Letters 329: 73-76.
42. Ono, Y., Hayashi, I., and Matsushima, T. (2002) Visual memory of shapes in quail chicks: discrimination among 2-dimensional objects. Zoological Science 19: 719-725.
41. Hayashi, I., Ono, Y., and Matsushima, T. (2001) Visual cues for suppressing the isolation-induced distress calls in newly hatched quail chicks. Zoological Science 18: 1065-1071.
40. Matsushima, T., Izawa, E.-I., and Yanagihara, S. (2001) D1-receptor dependent synaptic potentiation in the basal ganglia of quail chick. NeuroReport 12: 2831-2837.
39. Izawa, E.-I., Yanagihara, S., Atsumi, T., and Matsushima, T. (2001) The role of basal ganglia on reinforcement learning and imprinting in domestic chicks. NeuroReport 12: 1743-1747.
38. Yanagihara, S., Izawa, E.-I., Koga, K., and Matsushima, T. (2001) Reward-related neuronal activities in basal ganglia of domestic chicks. NeuroReport 12: 1431-1435.
1991 - 2000
37. Yanagihara, S., Koga, K., and Matsushima, T. (2000) Expression of transcription factor ZENK (zif-268) in telencephalon of quail chicks after induced seizure and passive avoidance training. Zoological Science 17: 1221-1229.
36. Aoki, M., Izawa E.-I., Koga, K., Yanagihara, S., and Matsushima, T. (2000) Accurate visual memory of colors in controlling the pecking behavior of quail chicks. Zoological Science 17: 1053-1059.
35. Sakai, S., Yanagihara, S., Kabai, P., Koga, K., and Matsushima, T. (2000) Predisposed memory of shapes in quail chicks. Zoological Science 17: 1045-1051.
34. Ishikawa, Y., Koga, K., and Matsushima T. (1999) Slowly developing potentiation in goldfish retino-tectal synapses is masked by prior stimulation; an in vitro study. Comparative Biochemistry and Physiology A, 124: 81-88.
33. Yazaki, Y., Matsushima,T., and Aoki, K. (1999) Testosterone modulates stimulation-induced calling behavior in Japanese quails. Journal of Comparative Physiology A, 184: 13-19.
32. Matsuura, A., Ohno, T., Matsushima, T., Namikawa, T., and Ishikawa, A. (1999) Delayed development of reflexes and hyperactive locomotion in the spontaneous mutant “Waltzing” of the musk shrew, Suncus murinus. Experimental Animal 48: 191-197.
31. Dicke, U., Roth, G., and Matsushima, T. (1999) Neural substrate for motor control of feeding in Amphibians. Acta Anatomica, 163: 127-143.
30. Yazaki, Y., Yamamoto, K., Matsushima, T., and Aoki, K. (1998) Non-genomic action of testosterone mediates avian vocal behavior. Proceedings of the Japan Academy, 74 (ser. B): 132-135.
29. Yanagihara, S., Yagi, T., and Matsushima, T. (1998) Distinct mechanisms for expression of Fos-like immunoreactivity and synaptic potentiation in telencephalic hyperstriatum of the quail chick. Brain Research, 779: 240-253.
28. Yazaki, Y., Matsushima, T., and Aoki, K. (1997) Stimulation elicits the chick crowing with testosterone in Japanese quail chicks. Zoologocal Science, 14: 227-231.
27. Yazaki, Y., Matsushima, T., and Aoki, K. (1997) Testosterone modulates calling behavior in Japanese quail chicks. Zoologocal Science, 14: 219-225.
26. Takeuchi, H.-A., Yazaki, Y., Matsushima, T. and Aoki, K. (1996) Expression of Fos-like immunoreactivity in the brain of quail chick emitting the isolation-induced distress calls. Neuroscience Letters 220: 191-194.
25. Matsushima, T. and Aoki, K. (1995) Potentiation and depotentiation of DNQX-sensitive fast excitatory synaptic transmission in telencephalone of the quail chick. Neuroscience Letters 185: 179-182.
24. Satou, M., Takeuchi, H.-A., Takei, K., Hasegawa, T. Matsushima, T., and Okumoto, N. (1994) Characterization of vibrational and visual signals which elicit spawning behavior in the male him salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Physiology A 174: 527-537.
23. Wadden, T., Grillner, S., Matsushima, T., and Lansner, A. (1993) Undulatory locomotion - simulation with realistic segmental oscillators. Proceedings of Computational and Neural Systems 92 (eds. F. H. Eeckman and J. M. Bower, Kluwer, Boston, MA pp.301-306.
22. Matsushima, T., Tegner, J., Hill, R.-H., and Grillner, S. (1993) GABA-B receptor activation causes a depression of low-and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. Journal of Neurophysiology 70: 2606-2619.
21. Grillner, S., Matsushima, T., Wadden, T., Tegner, J., El Manira, A., and Wallen, P. (1993) The neurophysiological bases of undulatory locomotion in vertebrates. Seminars in the Neurosciences 5: 17-27.
20. Oka, Y. and Matsushima, T. (1993) Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. Journal of Neuroscience 13: 2161-2176.
19. Tegner, J., Matsushima, T., El Manira, A., and Grillner, S. (1993) The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABA-A and GABA-B receptors. Journal of Neurophysiology 69: 647-657.
18. Hill, R.-H., Matsushima, T., Schotland, J., and Grillner, S. (1992) Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. NeuroReport 3:943-945.
17. Matsushima, T. and Grillner, S. (1992) Local serotonergic modulation of calcium-dependent potassium-channels controls intersegmental coordination in the lamprey spinal cord. Journal of Neurophysiology 67: 1683-1690.
16. Matsushima, T. and Grillner, S. (1992) Neural mechanisms of intersegmental coordination in lamprey -local excitability changes modify the phase coupling along the spinal cord. Journal of Neurophysiology 67: 373-388.
15. Satou, M., Shiraishi, A., Matsushima, T., and Okumoto, N. (1991) Vibrational communication during spawning behavior in the him salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Physiology A 168: 417-428.
14. Grillner, S. and Matsushima, T. (1991) The neural network underlying locomotion in lamprey - synaptic and cellular mechanisms. Neuron 7: 1-15
1984 - 1990
13. Nagai, T. and Matsushima, T. (1990) Morphology and distribution of the glossopharyngeal nerve afferent and efferent neurons in the Mexican salamander, Axolotl: a cobaltic-lysine study. Journal of Comparative Neurology 302: 473-484.
12. Matsushima, T. and Grillner, S. (1990) Intersegmental co-ordination of undulatory movements - a "trailing oscillator" hypothesis. NeuroReport 1: 97-100.11. Matsushima, T., M. Satou, and K. Ueda. (1989) Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum. Journal of Comparative Physiology A 166: 7-22.
10. Matsushima, T., Takei, K., Kitamura, S., Kusunoki, M., Satou, M., Okumoto, N., and Ueda, K. (1989) Rhythmic electromyographic activities of trunk muscles characterize the sexual behavior in the Hime salmon (landlocked sockeye salmon, Oncorhynchus nerka). Journal of Comparative Physiology A 165: 293-314.
9. Matsushima, T., Satou, M., and Ueda, K. (1988) Neuronal pathways for the lingual reflex in the Japanese toad. Journal of Comparative Physiology A 164: 173-193.
8. Takeuchi, H. -A., Takei, K., Satou, M., Matsushima, T., Okumoto, N., and Ueda, K. (1987) Visual cues as key stimuli for courtship behaviour in male Hime salmon (landlocked red salmon, Oncorhynchus nerka). Animal Behaviour 35: 936-939.
7. Matsushima, T., Satou, M., and Ueda, K. (1987) Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double-labeling with cobaltic-lysine and horseradish peroxidase in the Japanese toad. Neuroscience Letters 80: 241-245.
6. Matsushima, T., Satou, M., and Ueda, K. (1986) Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad. Brain Research. 365: 198-203.
5. Matsushima, T., Kitamura, S., Takei, K., Okumoto, N., Satou, M., and Ueda, K. (1986) An electromyographic study of sexual behavior in Hime salmon (landlocked sockeye salmon, Oncorhynchus nerka). Zoological Science 3: 563-567.
4. Satou, M., Matsushima, T., Takeuchi, H., and Ueda, K. (1985) Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the "snapping-evoking area" in the optic tectum. Journal of Comparative Physiology A 157: 717-737.
3. Matsushima, T., Satou, M., and Ueda, K. (1985) An electromyographic analysis of electrically-evoked prey-catching behavior by means of stimuli applied to the optic tectum in the Japanese toad. Neuroscience Research 3: 154-161.
2. Satou, M., Matsushima, T., and Ueda, K. (1984) Neuronal pathways from the "tectal snapping-evoking area" to the tongue-muscle-controlling motoneurons in the Japanese toad: evidence of the intervention of excitatory interneurons. Zoological Science 1: 829-832.
1. Satou, M., Oka, Y., Kusunoki, M., Matsushima, T., Kato,M., Fujita, I., and Ueda, K. (1984) Telencephalic and preoptic areas integrate sexual behavior in Hime salmon (landlocked red salmon, Oncorhynchus nerka): results of electrical brain stimulation experiments. Physiology and Behaviour 33: 441-447.