Bx.Py = xy
Bx.Py# with z #s = 10↑↑z topped with Bx.Py#
Bx.Py = xy
Bx.Py.Wz = Bx.Py# with z #'s
Bx.Py.Wz# with a #s = Bx.Py# with (10↑↑a topped with z) #'s
Going from 2D to 3D is the same as 1D to 2D, etc.
f{0}(n) = 1
f{1}(n) = n
f{2}(n) = 2n
f{n}(n) = n↑2
f{n+1}(n) = n↑3, not (n+1)(n+1)
f{n+2}(n) = n↑4
f{2n}(n) = n↑(n+2)
f{3n}(n) = n↑(2n+2)
...
f{x, y}(n) = (2)(f{x}(n↑y))↑f{x}(n↑y) −1 n
f{x, y, z}(n) = f{{x, y}, {y, z}}(f{n, z}(n))
f{x, y, z, a}(n) = f{{x, y, z}, {y, z, a}}(f{n, x, z}(f{{x, y}, {y, z}, {z, a]}}(n))
f{x, y} (n) = f{f {z, a}}(f{x, y, z, a}(x↑(y↑(z↑a))))
{z, a} {x, y}
{a, b, ..., n, 0} = {a, b, ... n}
{a, b, ..., n, 1} = {a, b, ... n}
{0, a, b, ...} = 0
{a} = a
{a, b} = ab
{a, b, c} = a↑c b
{a, b, c, d} = {a, b - 1, {a, b, c}, d-1}
{a, b, c, d, e} = {a - 1, b, {a, b, c}, d}↑e {a - 1, b, {a, b, c}, d}
{a, 0, b} = ab
{a, b, 0, c} = abc
{a, b, c, 0, d} = a↑d bc
{a, b, c, d, 0, e} = {a, bc - 1, {a, bc}, d-1}
{a, {b, 0}, c} = {a, b, c} (that’s intuitive, I only put it so you remember)
{a, 0, 1, c} = {a, c, 0, a}
{a, 0, b, c} = {a, b-1, 0, a} (slightly self-contradictory, but whatever)
{a, 0, 0, b, c, d} = {a, 0, d, 1, c, a}
{ax, b, c} = {ax, b, c}
{a, bx, c} = {a, bx, c}
{a, b, cx} = {a, b, cx}
{a{x, y}, b, c} = {ax, ay, b, c}
{a, b{x, y}, c} = {a, bx, by, c}
{a, b, c{x, y}} = {a, b, cx, cy}
{a{x, y, z}, b, c} = {ax, ay, az, b, c}
{a, b{x, y, z}, c} = {a, bx, by, bz, c}
{a, b, c{x, y, z}} = {a, b, cx, cy, cz}
{{x, y, z}a, b, c} = {{xa, ya, za}, {xa, ya, za}, ... {xa, ya, za}} with xyzabc {xa, ya, za}s
{a, {x, y, z}b, c} = {{xb, yb, zb}, {xb, yb, zb}, ... {xb, yb, zb}} with xyzabc {xb, yb, zb}s
...
{a, b, c, #} = {a, b, c, c, c, ... c} with a c’s
{a, b, c, #2} = {a, b, c, c, c, ... c, #} with a c’s
{a, b, c, #3} = {a, b, c, c, c, ... c, #2} with a c’s
...
{a, b, c, #, #} = {a, b, c, #a}
{a, b, c, #, #2} = {a, b, c, #a, #}
{a, b, c, #, #, #} = {a, b, c, #, #a}
...
{a, b, c, #^e} = {a, b, c #, #, #, ... #} with e #s
This allows you to make something like:
{a, b, c, d, #^{e, f, g}}
{a, b, c
d, e, f
g, h, i} = {a, b, c, #^{d, e, f,
g, h, i}} = {a, b, c, #^{d, e, f, #^{g, h, i}}}
Same applies for 3D so you get something like:
{a, b, c, #^{d, e, f, #^{g, h, i, #^{j, k, l, #^{...}}}}} with 8 #^ as opposed to 2, 4D has 26 #^s, etc.
{a, b, c, #^#} = {a, b, c, #^, #}
{a, b, c, *} = {a, b, c, #^#}
{a, b, c, *2} = {a, b, c, #^#, *}
{a, b, c, *3} = {a, b, c, #^#, *2}
...
{a, b, c, **} = {a, b, c, #^#, *a-1}
...
{a, b, c, /d} = {a, b, c, ***...*} with d *s
{a, b, c, /{d, e, f}}
{a, b, c, /{d, e, f, /g}}
{a, b, c, /{d, e, f, /{g, h, i}}}
...
{a, b, c, /#} = {a, b, c, /, /, /, ... /} with a /s
{a, b, c, /##} = {a, b, c, /#a}
...
{a, b, c, /#^d} = {a, b, c, /##...#e} with a #s
...
{a, b, c, /{d, e, f, /g}}
...
{a, b, c, /de} = {a, b, c, /(/(..(./e))...)} with d /s
{a, b, c, //d} = {a, b, c, /ad}
...
{a, b, c, //de} = {a, b, c, //(//...//(e))...)} with d //s
{a, b, c, /^de} = {a, b, c, //.../d} with d /s
...
{a, b, c, 0, \d} = {a, b, c, /ad}
{a, b, c, 0, \de} = {a, b, c, \ \ \...}
{a, b, c, 1, \d} = {a, b, c, 0, \\d}
{a, b, c, n, \d}= {a, b, c, 0, \^n+1 d}
0[0]0 = 1[0]0 = 0[1]0 = 0[0]1 = 1
a[1]0 = 10↑a
a[b]0 = 10a[b-1]0
a[b, c]0 = 10↑(a↑cb)
a[b, c, d]0 = 10↑(a[b, c-1, d-1]0)
a[b, c, d, e]0 = 10↑(a[b, c-1, d-1, e-1]0)
a[b]c = a[b, b-1]c-1, e.g. 2[2]2 = 2[2, 1]1 = 2[2, 1, 2, 0]0 = 10↑(2[1, 1, 1, -1]0)
a[b]c#d = a[a[a[...b...]]]c with d a's
Bx.Py.Wz#a = (10↑↑(10↑↑a-1)↑z)↑(xy), I think
Bx.Py.Wz#a#b = Bx.Py.Wz#(Bx.Py.Wz#a#b-1)
Bx.Py.Wz##a = Bx.Py.Wz#a#a#a#a#a...#a with a repetitions of #a
Bx.Py.Wz#^#a = Bx.Py.Wz#####...#a with a repetitions of #
Bx.Py.Wz#^^#a = Bx.Py.Wz#^#^#^...^#a with a repetitions of #^
Bx.Py.Wz#^^^#a = Bx.Py.Wz((..((#^^#)^^#)..)^^#)^^#a with a repetitions of ^^#
Bx.Py.Wz#αb = Bx.P(Bx.Py.Wz#α(b-1)).Wz
Bx.Py.Wz#βa = Bx.Py.Wz#α(Bx.Py.Wz#β(b-1))
...
Bx.Py.Wz#Ωa = Bx.Py.Wz#ω(Bx.Py.Wz#Ω(b-1))
NOTE: The greek letter progression goes: lowercase alpha, lowercase beta, lowercase gamma, capital gamma, lowercase delta, capital delta, lowercase epsilon, lowercase zeta, lowercase eta, lowercase theta, capital theta, lowercase lambda, lowercase xi, capital xi, capital phi, capital psi, lowercase omega, capital omega.
[α] = α
[α, n] = αn
[α, ω] =α2 + 1
[α, ωn] =αn+1 + 1
[α, ωω] = αα↑2+1+1
...
[a, b] = ab
[a, ω] = aa
[a, ω+b] = ab
[a, ω·2] = a↑↑a
[a, ω·b] = a↑↑b-2
[a, ω2] = a↑↑↑a
[a, ωb] = a↑↑↑b-2
[a, ωω] = a↑↑↑aa-1
[a, ω↑ωω] = a↑↑↑↑a
...
[a, b] = ab
[a, ω] = aa
[a, ω+b] = a↑(a·ab)
[a, ω·2] = a↑(a·a↑↑a)
[a, ω·b] = a↑(a·a↑ba)
[a, ω2] = a↑(a·a↑(a↑a-1)a)
[a, ωb] = a↑(a·a↑(a↑(a↑...(a-1...))) with b-1 a'sa)
[a, ωω] = a↑(a·a↑(a↑(a↑...(a-1...))) with a↑a-1 a'sa)
...
{a, b}0 = ab
{a, 1}{c, d} = {a, 1}c = a
{a, b}c = {a, {a, b-1}c}c-1
{a, b}{c, d} = {a, {a, b-1}{c, d}}{c, d-1}
{a, b}{0, d} = {a, a}{b, d-1}
{a, b}{c, 0} = {a, b}c
{a, 0}b = 1
{a, b}{0, 0, c, d} = {a, a}{0, b, c-1, d} = {a, a}{a, b-1, c-2, d-1}
{a, b}{c#1, d} = {a, b}{c, c, c, ..., c#1, d-1}, with b c's
{a, b}{c#n, d} = {a, b}{c#n-1, c#n-1, c#n-1, ..., c#n-1, d-1) with b c#n-1's
{a, b}{c#[0, d], e} = {a, b}, {c#[0, d], e-1#[0,d], e-1#[0, d], ... e-1#[0, d]} with d [0, d]'s
{a, b}{c#[d, e], f} = {a, b}, {c#[d, e], f-1#[d, e], f-1#[d, e], ... f-1#[d, e]} with {d, e}d-1 [d, e]s
{a, b}{c, c, c, ... c#d, 0} # {a, b}{c, c, c, ..., c}
...
τ0(α) = ω+α
τ1(α) = ω·α
τ2(α) = ωα
τα+1(β) = ταβ(β)
τα(β, γ) = ταγ+1(β)
...
λ(α, β, γ, ... δ, 1) = λ(α, β, γ, ... δ)
λ(α, β) = τα(β)
λ(α, β, γ) = λ(α, λ(α, β, γ-1)) ≠ τα(β, γ)
λ(α, β, γ, δ) = λ(α, β, λ(α, β, γ, δ-1))
...
Ci0(α) = ωi ∪ {0, 1, ω, ω1} ∪ ρi+1(0)
Ciβ+1(α) = {δ + θ, δθ, δθ | δ, θ ∈ Ciβ(α)}
Ci(α) = ⋃ Ciβ(α) ∀β < ω
C(α) = ⋃ Ci(α) ∀i < ω
ρi(α) = min({γ | γ ∉ Ci(α)})
ρ(α) = min({γ | γ ∉ C(α)})
∀μ, ν ∈ Cn(α) ⇒ μ + ν ∈ Cn(α)
C0(α) = α ∪ {0, 1, ω, ω1} ∪ ωα
Cn+1(α) = {γ + δ, Ξι(κ) | γ, δ, ι, κ ∈ Cn(α); ι < α} ∪ ωn + 1
Ξn(α) = min({λ < ωα | Cn(α) ∩ ωα ⊆ α ∧ α ∈ Cn(α)} ∪ ωα)
NOTE: This OCF I invented is not connected to my Lambda ordinal function, and it is a coincidence that they share the same letter.
λ(α) = ψ(α) in Buchholz's ψ function
λα(β, γ) = limit of the sequence ψ(α), ψ(β), ψ(γ), ...
λαn(β, γ) = ψ(n)th term of the sequence ψ(α), ψ(β), ψ(γ), ...
For example, the "small" Veblen ordinal = λ0(ΩΩ, ΩΩ↑2), Bachmann-Howard ordinal = λΩ(ΩΩ, ΩΩ↑Ω), Buchholz's ordinal = λΩ(Ω2, Ω3), Takeuti-Feferman-Buchholz ordinal = λε(Ω+1)(ε(Ω2+1), ε(Ω3+1)), Extended Buchholz's ordinal = λΩ(ΩΩ, ΩΩΩ), ...