⚫️学術論文 (査読有)
On Well-Posedness and Spatio-Temporal Pointwise Decay Property of Mild Solutions for Drift-Diffusion Equation
M. Miura, K. Shibata and Y. Sugiyama
to appear in Indiana Univ. Math. J. [pdf]
Time global existence and finite time blow-up criterion for solutions to the Keller-Segel system coupled with Navier-Stokes fluid
H. Kozono, M. Miura and Y. Sugiyama
J. Differential Equations 267 (2019), pp.5410--5492.
Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid
H. Kozono, M. Miura and Y. Sugiyama
J. Funct. Anal 270 (2016), pp.1663--1683.
On uniqueness theorem on weak solutions to the parabolic-parabolic Keller-Segel system of degenerate and singular types
M. Miura and Y. Sugiyama
J. Differential Equations 257 (2014), pp.4064--4086.
⚫️投稿中・投稿予定
Existence of strong solution to the Keller-Segel system coupled with the Navier-Stokes fluid in higher dimension
M. Miura
On H¨older continuity and asymptotic profile of solutions to non-linear diffusion equations with derivative external forces
S. Jeong, M. Miura and Y. Sugiyama
Asymptotic profile of solutions to degenerate parabolic equations with derivative external forces
S. Jeong, K. Kamemura, M. Miura and Y. Sugiyama
Sharp ε-regularity theorem, local mass conservation and its application to singular set analysis
J. Choi, M. Miura and Y. Sugiyama
On the threshold number of the mass for the Keller-Segel system coupled with sinks of fluid
Y. Hata, M. Miura and Y. Sugiyama
Well-posedness for the Keller-Segel system coupled with the Navier-Stokes fluid in the critical Besov spaces
M. Lee and M. Miura
Blow-up criteria and asymptotic behavior for chemotaxis system with advection on the plane
J. Ahn, M. Miura and Y. Sugiyama
Perturbation Theory for Non-Autonomous Parabolic Systems and their application to the Keller-Segel System on Evolving Domains
M. Miura and Y. Sugiyama
⚫️MISC
Well‐posedness for Keller‐Segel system coupled with the Navier‐Stokes fluid
小薗英雄, 三浦正成, 杉山由恵
RIMS Kôkyûroku (Vol.2066, pp.109--117) 2018年 4月