Submitted and ongoing projects:
Palm distributions of superposed point processes for statistical inference (with F. Camerlenghi and L. Ghilotti) [submitted, arXiv]
Previous version: [arXiv]
Large-scale entity resolution via microclustering Ewens--Pitman random partitions (with S. Favaro) [submitted, arXiv]
Sufficient digits and density estimation: A Bayesian nonparametric approach using generalized finite Pólya trees (with J. Møller) [submitted, arXiv]
Online activity prediction via generalized Indian buffet process models (with L. Masoero, S. Favaro, and T. Richardson) [submitted, arXiv]
Bayesian calculus and predictive characterizations of extended feature allocation models (with F. Camerlenghi and L. Ghilotti) [submitted, arXiv]
Bayesian nonparametric boundary detection for income areal data (with M. Gianella and A. Guglielmi) [submitted, arXiv]
Beraha, M., Favaro, S. (2025). Transform-scaled process priors for trait allocations in Bayesian nonparametrics. Electronic Journal of Statistics. [journal, arXiv]
Beraha, M., Argiento, R., Camerlenghi, F., & Guglielmi, A. (2025). Bayesian mixture models with repulsive and attractive atoms. Journal of the Royal Statistical Society: Series B [journal, arXiv]
Beraha, M., Favaro, S., & Sesia, M. (2025). A smoothed-Bayesian approach to frequency recovery from sketched data. Journal of the American Statistical Association. [journal, arxiv]
Beraha, M., Dolera, E., & Favaro, S. (2025). On the power of private likelihood-ratio tests for goodness-of-fit in frequency tables. Bernoulli, in press. [journal]
Beraha, M., Guindani, B., Gianella, M., & Guglielmi, A. (2025). BayesMix: Bayesian mixture models in C++. Journal of Statistical Software, 112(9), 1–40. [journal, arxiv]
Ghilotti, L., Beraha, M., & Guglielmi, A. (2024). Bayesian clustering of high‐dimensional data via latent repulsive mixtures. Biometrika, 111(2), 1345–1370 [journal, arxiv]
Beraha, M., Favaro, S., & Rao, V. (2024). MCMC for Bayesian nonparametric mixture modeling under differential privacy. Journal of Computational and Graphical Statistics, 33(4), 678–700 [journal, arxiv]
Beraha, M., Favaro, S., & Sesia, M. (2024). Random measure priors in Bayesian recovery from sketches. Journal of Machine Learning Research, 25, 1–53 [journal, arxiv]
Beraha, M. & Pegoraro, M. (2024). Wasserstein principal component analysis for circular measures. Statistics and Computing, 34(5), 1123–1150, [journal, arxiv]
Beraha, M. & Corradin, R. (2024). Bayesian nonparametric model based clustering with intractable distributions: an ABC approach. Bayesian Analysis [journal, arxiv]
Beraha, M., Guglielmi, A., Quintana, F. A., de Iorio, M., Eriksson, J. G., & Yap, F. (2023). Childhood obesity in Singapore: A Bayesian non parametric approach. Statistical Modelling, 21(2), 45–70 [journal]
Beraha, M. & Griffin, J. E. (2023). Normalized latent factor measure models, Journal of the Royal Statistical Society: Series B, 83(3), 125–150 [journal, arxiv]
Pegoraro, M. & Beraha, M. (2022). Projected statistical methods for distributional data on the real line with the Wasserstein metric. Journal of Machine Learning Research, 23(37), 1-59 [journal, arxiv]
Beraha, M., Pegoraro, M., Peli, R., & Guglielmi, A. (2021). Spatially dependent mixture models via the logistic multivariate CAR prior. Spatial Statistics, 12, 200–220 [journal, arxiv]
Beraha, M., Argiento, R., Møller, J., & Guglielmi, A. (2022). MCMC computations for Bayesian mixture models using repulsive point processes. Journal of Computational and Graphical Statistics, 30(2), 150–175 [journal, arxiv]
Beraha, M., Guglielmi, A., & Quintana, F. A. (2021). The semi‐hierarchical Dirichlet process and its application to clustering homogeneous distributions. Bayesian Analysis, 16(4), 400–425 [journal, arxiv]
Pegoraro, M. & Beraha, M. (2021). Fast PCA in 1-D Wasserstein spaces via B-splines representation and metric projection. Proceedings of AAAI’21 [conference, arxiv]
Beraha, M. & Guglielmi, A. (2019., Invited discussion on “Latent nested nonparametric priors” by Camerlenghi et al. Bayesian Analysis, 14(1), 210–215,
Beraha, M., Metelli, A. M., Papini, M., Tirizoni, A., & Restelli, M. (2019). Feature selection via mutual information: New theoretical insights. Proceedings of IJCNN 2019. [conference, arxiv]