M. Chatzakou and M. Ruzhansky. Revised logarithmic Sobolev inequalities of fractional order, to appear in: Bull. Sci. Math.
L. N. A. Botchway, M. Chatzakou and M. Ruzhansky. Semi-classical pseudo-differential operators on hZn and applications, J. Fourier Anal. Appl., 30, 41 (2024). doi.org/10.1007/s00041-024-10091-1
M. Chatzakou, A. Kassymov and M. Ruzhansky. Logarithmic Sobolev inequalities on Lie groups, J. Geom. Anal., 34, 275 (2024). doi.org/10.1007/s12220-024-01690-x
M. Chatzakou. Log-Sobolev and Nash inequalities on graded groups, Ruzhansky, M., Van Bockstal, K. (eds) Extended Abstracts 2021/2022, Trends in Mathematics, vol 2, Birk¨ auser, Springer. doi.org/10.1007/978-3-031-42539-4-3
M. Chatzakou and A. Tushir. Very weak solution of the discrete heat equation with irregular time-dependent thermal conductivity, Ruzhansky, M., Torebek, B. (eds) Extended Abstracts MWCAPDE 2023. MWCAPDE 2023, Trends in Mathematics, vol 1, Birkauser, Springer. doi.org/10.1007/978-3-031-41665-114
M. Chatzakou and V. Kumar. Lp-Lq boundedness of Fourier multipliers associated with the anharmonic Oscillator, J. Fourier Anal. Appl., (2023) 29:73, https://doi.org/10.1007/s00041-023-10047-x
M. Chatzakou, A. Dasgupta, M. Ruzhansky and A. Tushir. Discrete heat equation with irregular thermal conductivity and tempered distributional data, Proc. R. Soc. Edinb. A: Math., (2023), 1 - 24. doi.org/10.1017/prm.2023.84
M. Chatzakou, S. Federico and B. Zegarlinski. q-Poincaré inequalities on Carnot groups with filiform type Lie algebra, Potential Anal.,60, 1067–1092 (2024). doi.org/10.1007/s11118-023-10079-4
M. Chatzakou, A. Kassymov and M. Ruzhansky. Anisotropic Shannon Inequality, Osaka J. Math., 61(1):79–89 (2024). https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-61/issue-1/Anisotropic-Shannon-inequality/5697
M. Chatzakou, J. Delgado and M. Ruzhansky. On a class of anharmonic oscillators II. General case, Bull. Sci. Math., 80 (2022), No. 103196, 22 pp. doi: 10.1016/j.bulsci.2022.103196
M. Chatzakou, M. Ruzhansky and N. Tokmagambetov. The heat equation with singular potentials. II: Hypoelliptic case., Acta Appl. Math., 9, No. 2 (2022), 20 pp. doi:10.1007/s10440-022-00487-w
M. Chatzakou, M. Ruzhansky and N. Tokmagambetov. Fractional Klein-Gordon equation with singular mass. II: hypoelliptic case., Complex Var. Elliptic Equ., 7, No. 3 (2022), 615-632. doi: 10.1080/17476933.2021.1950146
M. Chatzakou, M. Ruzhansky and N. Tokmagambetov. Fractional Schr¨ odinger equations with singular potentials of higher order. II: Hypoelliptic case, Rep. Math. Phys., 89, No. 1 (2022), 59-79. doi: 10.1016/S0034-4877(22)00010-6
M. Chatzakou and V. Kumar. Lp-Lq boundedness of spectral multipliers of the anharmonic oscillator, C. R. Acad. Sci. Paris,60 (2022), 343–347. doi: 10.5802/crmath.290
M. Chatzakou. A note on spectral multipliers on the Engel and Cartan groups, Proc. Amer. Math. Soc., 150, No. 5 (2022), 2259–2270. doi: 10.1090/proc/15830
M. Chatzakou, J. Delgado and M. Ruzhansky. On a class of anharmonic oscillators., J. Math. Pures Appl., 153, No. 9 (2021), 1-29. doi: 10.1016/j.matpur.2021.07.006
M. Chatzakou and Y. Sarantopoulos. Estimates for polynomial norms on Banach spaces, Dolomites Res. Notes Approx., 14 (2021) 40–52. doi: 10.14658/pupj-drna-2021-3-5
M. Chatzakou. Quantizations on the Engel and Cartan groups, J. Lie Theory 31 (2021), no. 2, 517–542. arXiv:2003.10744
M. Chatzakou. On (λ,µ)-classes on the Engel group. In Advances in harmonic analysis and partial differential equations, Trends in Mathematics, (2020), p. 37–49. doi.org/10.1007/978-3-030-58215-92, arXiv:2006.12888
M. Chatzakou and Y. Sarantopoulos. Bernstein and Markov-type inequalities for polynomials on Lp(µ) spaces, Dolomites Res. Notes on Approxim. 12 (2019), 16–28.
M. Chatzakou, A. Kassymov and M. Ruzhansky. On global solutions of heat equations with time-dependent nonlinearities on unimodular Lie groups. arXiv:2404.05611.pdf (2024)
M. Chatzakou. Geometric logarithmic Hardy and Hardy-Poincaré inequalities on stratified groups, arXiv: 2402.10279 (2024)
M. Chatzakou, M. Ruzhansky and A. Shriwastawa. Sharp upper bound for anisotropic Rényi entropy and Heisenberg uncertainty principle, arXiv:2402.10003 (2024)
D. Cardona, M. Chatzakou, J. Delgado, V. Kumar M. Ruzhansky. Anharmonic semigroups and applications to global well-posedness of nonlinear heat equations, arXiv:2401.13750 (2024)
M. Chatzakou, A. Kassymov and M. Ruzhansky. Logarithmic Sobolev, Hardy and Poincaré inequalities on the Heisenberg group, arXiv:2310.00992 (2023)
D. Cardona, M. Chatzakou, J. Delgado and M. Ruzhansky. Degenerate Schrödinger equations with irregular potentials, arXiv:2302.02413 (2023)
M. Chatzakou, J. E. Restepo and M. Ruzhansky. Heat and wave type equations with non-local operators, II. Hilbert spaces and graded Lie groups, arXiv:2301.12256 (2023)
D. Cardona, M. Chatzakou, M. Ruzhansky and J. Toft. Schatten-von Neymann properties for Hörmander classes on compact Lie groups, arXiv:2301.04044 (2023)
M. Chatzakou, S. Federico and B. Zegarlinski. Poincaré inequalities on Carnot groups and spectral gap of Schrödinger operators, arXiv:2211.09471 (2022)
M. Chatzakou, A. Kassymov and M. Ruzhansky. Logarithmic Hardy-Rellich inequalities on Lie groups, arXiv:2107.04874 (2022)