Coding theory and applications
Multilevel lattice constructions of lattices from linear codes, formally self-dual codes, physical layer security.
Lattice-based cryptography
Gaussian sampling, lattice isomorphism problem, reverse Minkowski theorem.
2026
I. Bocharova, M. F. Bollauf, and B. Kudryashov, Coset Shaping for Coded Modulation, to appear in 2026 International Zurich Seminar in Information and Communication.
2025
G. T. Bastos, M. F. Bollauf, A. J. Ferrari, and Ø. Ytrehus, Linearity of Z_{2^L}-Linear Codes via Shur Product, Designs, Codes and Cryptography, 2025. Springer. ArXiv.
M. F. Bollauf and H.-Y. Lin, Generalized Theta Series of a Lattice, IEEE Information Theory Workshop, Sep. 2025. IEEE. ArXiv.
M. F. Bollauf, M. Lie, and C. Ling, On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight, CRYPTO 2025, Aug. 2025. Springer. ePrint.
M. F. Bollauf, R. Parisella, and J. Siim, Revisiting Discrete Logarithm Reductions, IACR Communications in Cryptology, vol. 2, no. 2, pp. 1-24, Jul. 2025. IACR. ePrint.
2024
G. T. Bastos, M. F. Bollauf, A. J. Ferrari, and Ø. Ytrehus, Nested Construction of Z_{2^L}-Linear Codes, IEEE International Symposium on Information Theory, pp. 2598-2603, Jul. 2024. IEEE
M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, Secrecy Gain of Formally Unimodular Lattices from Codes over the Integers Modulo 4, IEEE Transactions on Information Theory, vol. 70, no. 5, pp. 3309-3329, May 2024. IEEE. ArXiv.
2023
M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, Formally Unimodular Packings for the Gaussian Wiretap Channel, IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 7755-7776, Dec. 2023. IEEE. ArXiv.
P. R. Persson, M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, On the Secrecy Gain of Isodual Lattices from Tail-Biting Convolutional Codes, 12th International Symposium on Topics in Coding, pp. 1-5, Oct. 2023. IEEE.
M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, Construction and Secrecy Gain of Formally Unimodular Lattices in Odd Dimensions, IEEE Information Theory Workshop, pp. 186-191, Apr. 2023. IEEE.
2022
V. A. Vaishampayan and M. F. Bollauf, Interactive Nearest Lattice Point Search in a Distributed Setting: Two Dimensions, IEEE Transactions on Communications, vol. 70, n. 8, pp. 5128-5139, Aug. 2022. IEEE. ArXiv.
M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, On the Secrecy Gain of Formally Unimodular Construction A4 Lattices, IEEE International Symposium on Information Theory, pp. 3226-3231, Jun. 2022. IEEE. ArXiv.
M. F. Bollauf, H.-Y. Lin, and Ø. Ytrehus, The Secrecy Gain of Formally Unimodular Lattices on the Gaussian Wiretap Channel, International Zurich Seminar on Information and Communication, pp. 69-73, Mar. 2022. ETH Zurich. ArXiv.
2021
M. F. Bollauf, V. A. Vaishampayan, and S. I. R. Costa, On Communication for Distributed Babai Point Computation, IEEE Transactions on Information Theory, vol. 67, n. 10, pp. 6408-6424, Oct. 2021. IEEE. ArXiv.
M. F. Bollauf and Ø. Ytrehus, Tiling of Constellations, IEEE International Symposium on Information Theory, pp. 450-454, Jul. 2021. IEEE. ArXiv.
< 2020
M. F. Bollauf, R. Zamir, and S. I. R. Costa, Multilevel Constructions: Coding, Packing and Geometric Uniformity, IEEE Transactions on Information Theory, vol. 65, n. 12, pp. 7669-7681, Dec. 2019. IEEE. ArXiv.
M. F. Bollauf, J. J. Boutros, and N. Mir, New Bounds for GLD Lattices and Codes, Information Theory Workshop, pp. 1-5, Aug. 2019. IEEE. pdf.
M. F. Bollauf, R. Zamir, and S. I. R. Costa. Construction C*: an Inter-Level Coded Version of Construction C, International Zurich Seminar on Information and Communication, pp. 118-122, Mar. 2018. ETH Zurich. ArXiv.
V. A. Vaishampayan and M. F. Bollauf, Communication Cost of Transforming a Nearest Plane Partition to the Voronoi Partition, IEEE International Symposium on Information Theory, pp. 1843-1847, Jun. 2017. IEEE. ArXiv.
M. F. Bollauf, V. A. Vaishampayan, and S. I. R. Costa, On the Communication Cost of Determining an Approximate Nearest Lattice Point, IEEE International Symposium on Information Theory, pp. 1838-1842, Jun. 2017. IEEE. ArXiv.
M. F. Bollauf and R. Zamir, Uniformity Properties of Construction C, IEEE International Symposium on Information Theory, pp. 1516-1520, Jul. 2016. IEEE. ArXiv.
E. B. de Figueiredo, M. F. Bollauf, and R. Miarka, A (Im)possibilidade da Quadratura do Circulo por meio da Quadratriz, Revista do Professor de Matemática, n. 81, Apr. 2013. Em português, pdf.
PhD Thesis
M. F. Bollauf, Lattices for Communication Problems, 2018.
Notes
M. F. Bollauf, Ideal Lattices and Cryptography, 2016.
Preprints
M. F. Bollauf and H.-Y. Lin, On the Maximum Flatness Factor over Unimodular Lattices, Mar. 2024. ArXiv.
Master
Palma Rud Persson, Department of Informatics, University of Bergen. Defense: June 2023. Currently at Knowit.
Maria van der Reek Lindsheim, Department of Informatics, University of Bergen. Defense: June 2023. Currently at DNB.
Júlia Wotzasek Pereira, Department of Pure and Applied Mathematics, Federal University of São Paulo. Defense: August 2023. Currently at Ericsson Brazil.
Bachelor
Joosep Lainvoo, Institute of Mathematics and Statistics, University of Tartu.