Search this site
Embedded Files
Cybernetics Laboratory
  • Home
  • Activities
  • Method
  • Theses
  • Themes
Cybernetics Laboratory
  • Home
  • Activities
  • Method
  • Theses
  • Themes
  • More
    • Home
    • Activities
    • Method
    • Theses
    • Themes

>  Movie: A Simulation of Multidimensional Logic Analysis

>  動画: 多次元論理分析のシミュレーション 

Man-Machine Logics

人間機械論理

>  You can get the C source codes of Boolean Multivalued Logic for Solving the Trolley Problems

For example, suppose that a logic formula x takes an n-bit sequence; the truth value T(x) is the number of bit 1s on x divided by n; a logic operation is one to which a Boolean binary operation is applied bitwise. Under condition of n = 4 and T(x) = T(y) = 0.5, candidates of (x, y) are (1100, 1100), (1100, 1010), (1100, 0011), etc. Hence the implication from x to y takes 1111 (the truth value of which is 1), 1011 (the truth value of which is 0.75), 0011 (the truth value of which is 0.5), etc. This means that the truth value of implication is not necessarily unique. Thus we can configure, as a multidimensional Boolean logic on normal computers, such a logic system that truth values are not determined uniquely in inferences by applying logic operations to definite knowledges, that is, to plural logic formulae with known truth values, which means that computers can reasonably have individualities.

例えば論理式は n ビット列、真理値はビット 1 の個数を n で割った値とし、論理演算はブール二元論理演算をビットごとに適用したものとするとき、n = 4 かつ論理式 x と y の真理値が共に 0.5 なる前提下で、(x, y) の候補として (1100, 1100) や (1100, 1010) や (1100, 0011) などが得られるので、含意 x→y は 1111(真理値 1)や 1011(真理値 0.75)や 0011(真理値 0.5)などとなり、含意の真理値は一意には定まりません。このように、知識(すなわち、真理値が既知である複数の論理式)に対し論理演算を適用して推論をおこなう際に真理値が一意には定まらないような論理系は、一般的なコンピューター上の多次元ブール論理系として構築でき、このことはコンピューターが合理的に個性を持ち得ることを示唆します。

For example, suppose that a logic formula x takes an n-bit sequence; the truth value T(x) is the number of bit 1s on x divided by n; a logic operation is one to which a Boolean binary operation is applied bitwise. Under condition of n = 4 and T(x) = T(y) = 0.5, candidates of (x, y) are (1100, 1100), (1100, 1010), (1100, 0011), etc. Hence the implication from x to y takes 1111 (the truth value of which is 1), 1011 (the truth value of which is 0.75), 0011 (the truth value of which is 0.5), etc. This means that the truth value of implication is not necessarily unique. Thus we can configure, as a multidimensional Boolean logic on normal computers, such a logic system that truth values are not determined uniquely in inferences by applying logic operations to definite knowledges, that is, to plural logic formulae with known truth values, which means that computers can reasonably have individualities.

> Guide

> bml16.lib

> test.c

下記リストのいずれかへの参照を伴う当ライブラリの学術利用は自由です。ソフトウェア情報センター下の登録番号はP第10779-1号です。商用時はご連絡ください。

Academic use of the library is free if any ones in the following list are referred.  Software registration under the Software Information Center in Japan is P10779-1.  Contact here for business uses.

Selection

Boolean Multivalued Logic

  • [FPGA applicable] H. Suzuki, K. Sugimoto, “New Multivalued Logic System in Boolean Class by Regarding Fixed-point Binary Numbers as Truth Values,” in Proc. RPC 2010, Vladivostok, Russia Sep. 6-9, 2010, pp. 57-62.

  • 鈴木 寿, “ロボットの知性を扱うための基本理論としてのブール性を満たすファジィ論理について,” 日本ロボット学会誌, vol. 19, no. 4, pp. 476-484, May, 2001.

  • K. Sugimoto, K. Suzuki, H. Suzuki, “Gödel Platform,” in Proc. IMCIC 2011, vol. 1, Orlando, FL, Mar. 27-30, 2011, pp. 195-200.

  • 鈴木 寿, 知識情報処理の基礎 - Cによる多値論理処理. Tokyo, Japan: 培風館, Dec. 1999.

  • H. Suzuki, “A Complementary Fuzzy Logic System,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 27, no. 2, pp. 293-295, Apr. 1997.

  • [FPGA applicable] K. Suzuki, K. Sugimoto, H. Suzuki, “Boolean Complex Logic,” in Proc. IEEE ComComAp 2012, Hong Kong, China, Jan. 11-13, 2012, pp. 370-375.

Boolean Multivalued Logic

Conferences

  1. [FPGA applicable] K. Suzuki, K. Sugimoto, H. Suzuki, “Boolean Complex Logic,” in Proc. IEEE ComComAp 2012, Hong Kong, China, Jan. 11-13, 2012, pp. 370-375.

  2. A. Sasaki, K. Suzuki, K. Sugimoto, H. Suzuki, “New Boolean Multivalued Logic System Simplifying Inferences in Flexible Styles,” in Proc. IEEE ICSEng 2011, Las Vegas, NV, Aug. 16-18, 2011, pp. 109-114.

  3. K. Sugimoto, K. Suzuki, H. Suzuki, “Gödel Platform,” in Proc. IMCIC 2011, vol. 1, Orlando, FL, Mar. 27-30, 2011, pp. 195-200.

  4. [FPGA applicable] H. Suzuki, K. Sugimoto, “New Multivalued Logic System in Boolean Class by Regarding Fixed-point Binary Numbers as Truth Values,” in Proc. RPC 2010, Vladivostok, Russia Sep. 6-9, 2010, pp. 57-62.

  5. H. Suzuki, S. Arimoto, “Proposal of a Boolean Fuzzy Logic System Guaranteed a Logical Consistency,” in Proc. ICFS '93, vol. 1, San Francisco, CA, Mar.28 - Apr.1, 1993, pp. 554-557.

  6. 野﨑 裕人, リン ジンズゥ, 鈴木 寿, “クラスタリングにより知識の局所的一貫性を確保するブール多値論理推論,” in 情報処理学会研究報告 アルゴリズム(AL), vol. 2020-AL-178, no. 2, Tokyo, Japan, May 9, 2020, pp. 1-3.

Exhibition

  1. 鈴木 寿, “人間の矛盾を改善できる人工知能ロボットの推論コア,” イノベーション・ジャパン2017, 情報通信, I-13, Tokyo, Japan, Aug. 31 - Sep. 1, 2017.

Journals

  1. H. Suzuki, “A Boolean Multivalued Logical Model of Varying Confirmation by Observation of Events and Hempel's Paradox of the Ravens,” IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E83-D, no. 6, pp. 1314-1316, June 25, 2000.

  2. H. Suzuki, “Multivalued Logic for Inference Chain, Induction and Deduction,” in IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E81-A, no. 9, Sep. 25, 1998, pp. 1948-1950.

  3. H. Suzuki, “A Boolean Complementary Fuzzy Logic System,” Systems and Computers in Japan, vol. 28, no. 8, pp. 68-73, Aug. 1997.

  4. H. Suzuki, “A Complementary Fuzzy Logic System,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 27, no. 2, pp. 293-295, Apr. 1997.

  5. H. Suzuki, S. Arimoto, “Source Coding of Sentences with Truth Values on a [0, 1]-Valued Logic System,” IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E77-A, no. 8, pp. 1371-1374, Aug. 25, 1994.

  6. H. Suzuki, S. Arimoto, “Embedment of a Fuzzy Logic System into a Boolean Lattice for Satisfying a Complementary Law,” Information Sciences, vol. 78, no. 3-4, pp. 257-268, May 1994.

  7. [FPGA applicable] 鈴木 寿, 齋藤 亮, 島田 道雄, “機械知能を設計するための基本技術としてのブール多値論理の小数符号化,” 日本ロボット学会誌, vol. 22, no. 2, pp. 215-222, Mar. 2004.

  8. 鈴木 寿, “ロボットの知性を扱うための基本理論としてのブール性を満たすファジィ論理について,” 日本ロボット学会誌, vol. 19, no. 4, pp. 476-484, May, 2001.

  9. 鈴木 寿, “ブール相補ファジー論理系,” 電子情報通信学会論文誌 D-1 (情報・システム 1-コンピュータ), vol. J79-D1, no. 7, pp. 395-399, July 25, 1996.

Book

  1. 鈴木 寿, 知識情報処理の基礎 - Cによる多値論理処理. Tokyo, Japan: 培風館, Dec. 1999.

Students' Theses

Master

2019年度: ブール多値論理系意味ネットワーク上のクラスタ分割による知識の局所的一貫性確保2009年度: ブール多値論理上の学習の整数計画問題へのモデル化

Bachelor

2017年度: ブール多値論理系において自然言語表記された知識を真理値付きの論理式へと…2007年度: ブール多値論理にもとづくエキスパートシステムの設計に関する研究1995年度: 相補ファジィ論理系における推論システムの開発

> Back

> Home

Google Sites
Report abuse
Google Sites
Report abuse