dx/dt = y + γ x + C z
dy/dt = ω x - δ2 y
ε dz/dt = (1 - x2) (S x - D z) - δ3 z
parameters: γ = 0.2, C = 2.2, δ2 = 0.001, δ3 = 0.0001, ε =0.3, ω = -10.0,
S = 1.667, D = 0.0
The step size of the fourth-order Runge-Kutta method: 0.001
Lyapunov exponents (log with base-e): 4.0784, 0.2011, -7.6791
Lyapunov dimension: 2.5573
Abarbanel先生は、下記の論文と本の中でδ3 = 0.001、ω=10.0、S=1667.0と書いておられますが、それらの値を使うと方程式の値を得ることが出来ません。Abarbanel先生は、誤ってそれらの値を書かれたのだと思います。上記の値を使うと問題なく計算が出来るので、これらの値が正しいと思います。
In the following paper and book, Professor Abarbanel wrote δ3 = 0.001, ω=10.0, S=1667.0 but we cannot obtain the value of the equation using those values. I think Professor Abarbanel wrote those values incorrectly. The calculation can be done without problems using the values mentioned above, so I think these values are correct.
Reference
Predicting physical variables in time-delay embedding
Henry Don Isaac Abarbanel, T. A. Carroll, Louis M. Pecora, John J. Sidorowich,
and Lev S. Tsimring
Physical Review E 49, 1840-1853 (1994)
Analysis of observed Chaotic Data (p. 33)
Henry Don Isaac Abarbanel
Springer-Verlag, New York (1996/Jan/15)
ISBN-10: 0387945237
ISBN-13: 978-0387945231