C1 dvc1/dt = G (vc2 - vc1) - g(vc1)
C2 dvc2/dt = G (vc1 - vc2) - iL
L diL/dt = -vc2
g(vc1) = m0vc1 + (m1 - m0)|vc1 + Bp|/2 + (m0 - m1)|vc1 + Bp|/2
parameters: C1 = 1/9, C2 = 1.0, L = 1/7, G = 0.7, m0 = -0.5, m1 = -0.8, Bp = 1.0
The step size of the fourth-order Runge-Kutta method: 0.001
Lyapunov exponents (log with base-e): 0.2288, -0.0006, -1.7697
Lyapunov dimension: 2.1290
Reference
The double scroll
Takashi Matsumoto, Leon Ong Chua, and Motomasa Komuro
IEEE Transactions on Circuits and Systems, vol. 32, pp. 797-818, 1985.
programme
double_scroll_lyap.c contains the main function.