Scaling Rough Terrain Locomotion
with Automatic Curriculum Reinforcement Learning
Scaling Rough Terrain Locomotion
with Automatic Curriculum Reinforcement Learning
Abstract
Curriculum learning has demonstrated substantial effectiveness in robot learning. However, it still faces limitations when scaling to complex, wide-ranging task spaces. Such task spaces often lack a well-defined difficulty structure, making the difficulty ordering required by previous methods challenging to define. We propose a Learning Progress-based Automatic Curriculum Reinforcement Learning (LP-ACRL) framework, which estimates the agent’s learning progress online and adaptively adjusts the task-sampling distribution, thereby enabling automatic curriculum generation without prior knowledge of the difficulty distribution over the task space. Policies trained with LP-ACRL enable the ANYmal D quadruped to achieve and maintain stable, high-speed locomotion at 2.5 m/s linear velocity and 3.0 rad/s angular velocity across diverse terrains, including stairs, slopes, gravel, and low-friction flat surfaces—whereas previous methods have generally been limited to high speeds on flat terrain or low speeds on complex terrain. Experimental results demonstrate that LP-ACRL exhibits strong scalability and real-world applicability, providing a robust baseline for future research on curriculum generation in complex, wide-ranging robotic learning task spaces.
No Prior Knowledge for Manual Curriculum Design
Learning Progress-based Automatic Curriculum Reinforcement Learning Framework(LP-ACRL)