Objectives :
Understand the theoretical foundations of artificial intelligence and see its impact on modeling and on the search for knowledge when making decisions.
Content :
Introduction to information retrieval and data mining.
Data structures.
Information retrieval: models: Boolean model, Vector model.
Data mining: Process "CRISP-DM", Data-warehouse, Data mining techniques, Decision Tree....
TextBook for the first part "Information retrieval"
link (pdf)
Sub Group 01
A LOUMI Mohammed, GUERRA Manar, YAHI Fedwa
B RADJA Imane, CHAMI Wiam, GUERSSAS Tayeb
C BOUGOUTAYA Chaima, KHELIFI Takwa
D BOUZIDI Mouna, MAZOUZ Maram, ATTLAOUI Noureddine
E MECHIKI Abdelouahab, BOUBAAYA Aziz, KHODJA Belkacem
Sub Group 02
F ABDELLAOUI Nessrine, BOUZIDI Cheima
G SALHI Chaima, AIMEUR Ledmya, OUCIF Amira
H SAAD Zayd, BAGHDADI Younes, DJAALAB Chaban
I MENASRI Bouthayna, LEBCIR Kheira
J ,
K BOUZID Fatiha
Chapter 01 : Introduction to information retrieval and data mining.
Slides (01)
Chapter 02 : Information retrieval
Assignments (TD 01, TP 01, TP01 Report uploader deadline: 03/11/2024 )
Assignments (TP 02, TP02 Report uploader deadline: 10/12/2024)
Assignments (TP 03, TP03 Report uploader deadline: 10/12/2024)
Exam's of last years
2017-2018 (exam, correction)
2018-2019 (exam, correction)
2019-2020 (exam, correction)
2020-2021 (exam, correction)
2021-2022 (exam, correction)
2022-2023 (exam, correction)
2023-2024 (exam, correction)
2024-2025 (notes)