# Cut-and-Paste Code Below into Window Above and Run
#
# UK18 BAU Model United Kingdom
#
merge.forecast <- function (fx,n=1) {
x <- splice(fx$pred,fx$forecast[[n]])
colnames(x) <- seriesNames(fx$data$output)
return(x)
}
AIC <- function(model) {informationTestsCalculations(model)[3]}
require(dse)
require(matlab)
#
# measurementModel overall-XREAL, HOURS+XREAL-N, U+XREAL-HOURS, Q-N
#
#
# Q N U HOURS XREAL
#[1,] 0.473 0.463 0.465 0.375 -0.452
#[2,] -0.155 -0.315 0.200 0.821 0.403
#[3,] 0.186 -0.145 0.744 -0.426 0.457
#[4,] 0.528 0.421 -0.398 0.054 0.618
#
# Fraction of Variance
#[1] 0.881 0.991 1.000 1.000 1.000
f <- matrix( c( 1.030137537, 0.01728729, 0.04818602, 0.083378905,
0.035599341, 1.04593172, 0.07941981, 0.016958610,
-0.002368278, -0.02175487, 0.99175520, -0.005868245,
0.00000000, 0.0000000, 0.0000000, 1.0000000000
),byrow=TRUE,nrow=4,ncol=4)
#
# To Stabilize, Uncomment next line
# f[1,1] <- f[2,2] <- 0.90
#
h <- eye(3,4)
k <- (f[,1:3,drop=FALSE])
UK18 <- SS(F=f,H=h,K=k,z0=c(0.083378905, 0.016958610, -0.005868245, 1.0000000000),
output.names=c("UK1","UK2","UK3"))
print(UK18)
is.SS(UK18)
stability(m <- SS(F=f[1:3,1:3,drop=FALSE],Q=eye(3),R=eye(3),H=eye(3)))
# tfplot(simulate(UK18,sampleT=100))
UK18.data <- simulate(UK18,sampleT=100,noise=matrix(0,100,3),start=1700)
UK18.f <- forecast(l(UK18,UK18.data),horizon=150)
tfplot(UK18.f)
AIC(l(UK18,UK18.data))
shockDecomposition(m)