* indicates equal contribution
Hyeonjae Kim*, Dongjin Kim*, Eugene Jin, Tae Hyun Kim, "Continuous Degradation Modeling via Latent Flow Matching for Real-World Super-Resolution," The 40th Annual AAAI Conference on Artificial Intelligence (AAAI), 2026. [project page]
Dongjin Kim*, Jaekyun Ko*, Muhammad Kashif Ali, Tae Hyun Kim, "IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising," International Conference on Computer Vision (ICCV), 2025. [project page][pdf]
Junseong Shin*, Seungwoo Chung*, Yunjeong Yang, Tae Hyun Kim, "HazeFlow: Revisit Haze Physical Model as ODE and Non-Homogeneous Haze Generation for Real-World Dehazing," International Conference on Computer Vision (ICCV), 2025. [project page][pdf]
Donggoo Jung*, Daehyun Kim*, Guanghui Wang, Tae Hyun Kim, "Exposure-slot: Exposure-centric representations learning with Slot-in-Slot Attention for Region-aware Exposure Correction," Computer Vision and Pattern Recognition (CVPR), 2025. [pdf] [code]
Donggoo Jung*, Daehyun Kim*, Tae Hyun Kim, "Continuous Exposure Learning for Low-light Image Enhancement using Neural ODEs," International Conference on Learning Representations (ICLR), 2025. (spotlight) [pdf] [code]
Muhammad Kashif Ali, Eun Woo Im, Dongjin Kim, Tae Hyun Kim, "Harnessing Meta-Learning for Improving Full-Frame Video Stabilization," Computer Vision and Pattern Recognition (CVPR), 2024. [project page] [pdf]
Changjin Kim, Tae Hyun Kim, Sungyong Baik, "LAN: Learning to Adapt Noise for Image Denoising," Computer Vision and Pattern Recognition (CVPR), 2024. [pdf] [code]
Dongjin Kim*, Donggoo Jung*, Sungyong Baik, Tae Hyun Kim, "sRGB Real Noise Modeling via Noise-Aware Sampling with Normalizing Flows," International Conference on Learning Representations (ICLR), 2024. [pdf] [code]
Young Jae Oh, Jihun Kim, Tae Hyun Kim, "Efficient Model Agnostic Approach for Implicit Neural Representation Based Arbitrary-Scale Image Super-Resolution," arXiv, 2023. [pdf]
Daehyun Kim, Sungyong Baik, Tae Hyun Kim, "SANFlow: Semantic-Aware Normalizing Flow for Anomaly Detection," Neural Information Processing Systems (NeurIPS), 2023. [pdf] [project page]
Eun Woo Im*, Junsung Shin*, Sungyongs Baik, Tae Hyun Kim, "Deep Variational Bayesian Modeling of Haze Degradation Process,"ACM International Conference on Information and Knowledge Management (CIKM), 2023. (Long Paper) [pdf] [project page]
Muhammad Kashif Ali, Dongjin Kim, Tae Hyun Kim, "Task Agnostic Restoration of Natural Video Dynamics," International Conference on Computer Vision (ICCV), 2023. [pdf]
Eunhye Lee*, Jinsu Yoo*, Yunjeong Yang, Sungyong Baik, Tae Hyun Kim, "Semantic-Aware Dynamic Parameter for Video Inpainting Transformer," International Conference on Computer Vision (ICCV), 2023. [pdf]
Seobin Park*, Dongjin Kim*, Sungyong Baik, Tae Hyun Kim, "Learning Controllable Degradation for Real-World Super-Resolution via Constrained Flows," International Conference on Machine Learning (ICML), 2023. [pdf] [code]
Chaerin Min, Tae Hyun Kim, Jongwoo Lim, "Meta-Learning for Adaptation of Deep Optical Flow Networks," Winter Conference on Applications of Computer Vision (WACV), 2023. [pdf]
Jinsu Yoo, Taehoon Kim, Sihaeng Lee, Seung Hwan Kim, Honglak Lee, Tae Hyun Kim, "Enriched CNN-Transformer Feature Aggregation Networks for Super-Resolution," Winter Conference on Applications of Computer Vision (WACV), 2023. [pdf] [project page]
Seunghwan Lee, Tae Hyun Kim, "NoiseTransfer: Image Noise Generation with Contrastive Embeddings," Asian Conference on Computer Vision (ACCV), 2022. (oral) [pdf] [code]
Seobin Park, Tae Hyun Kim, "Progressive Image Super-Resolution via Neural Differential Equation," International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022. [pdf]
Muhammad Kashif Ali*, Sangjoon Yu*, Tae Hyun Kim, "Deep Motion Blind Video Stabilization," The British Machine Vision Conference (BMVC), 2021. [pdf] [project page]
Seunghwan Lee, Donghyeon Cho, Jiwon Kim, Tae Hyun Kim, "Restore from Restored: Video Restoration with Pseudo Clean Video," Computer Vision and Pattern Recognition (CVPR), 2021. [pdf] [project page]
Seobin Park*, Jinsu Yoo*, Donghyeon Cho, Jiwon Kim, Tae Hyun Kim, "Fast Adaptation to Super-Resolution Networks via Meta-Learning," European Computer Vision Conference (ECCV), 2020. [pdf] [project page]
Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun Kim, Kyoung Mu Lee, "Scene-Adaptive Video Frame Interpolation via Meta-Learning," Computer Vision and Pattern Recognition (CVPR), 2020. [pdf] [project page]
Tae Hyun Kim, Mehdi S. M. Sajjadi, Michael Hirsch, Bernhard Schölkopf, "Spatio-temporal Transformer Network for Video Restoration," European Computer Vision Conference (ECCV), 2018. [pdf]
Tae Hyun Kim, Kyoung Mu Lee, Bernhard Schölkopf, Michael Hirsch, "Online Video Deblurring via Dynamic Temporal Blending Network," International Conference on Computer Vision (ICCV), 2017. [pdf]
Seungjun Nah, Tae Hyun Kim, Kyoung Mu Lee , "Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring," Computer Vision and Pattern Recognition (CVPR), 2017. (spotlight) [pdf] [project page]
Tae Hyun Kim, Kyoung Mu Lee, "Generalized Video Deblurring for Dynamic Scenes," Computer Vision and Pattern Recognition (CVPR), 2015. (oral) [pdf] [project page]
Tae Hyun Kim, Kyoung Mu Lee, "Segmentation-Free Dynamic Scene Deblurring," Computer Vision and Pattern Recognition (CVPR), 2014. (oral) [pdf]
Tae Hyun Kim, Byeongjoo Ahn, Kyoung Mu Lee, "Dynamic Scene Deblurring," International Conference on Computer Vision (ICCV), 2013. [pdf]
Tae Hyun Kim, Hee Seok Lee, Kyoung Mu Lee, "Optical Flow via Locally Adaptive Fusion of Complementary Data Costs," International Conference on Computer Vision (ICCV), 2013. [pdf]
* indicates equal contribution
Muhammad Kashif Ali, Eun Woo Im, Dongjin Kim, Tae Hyun Kim, Vivek Gupta, Haonan Luo, Tianrui Li, "Harnessing Meta-Learning for Controllable Full-Frame Video Stabilization," arXiv, 2025. [pdf]
Inho Lee, Jaemin Park, Seunghwan Lee, Tae Hyun Kim, Jiwon Seo, Hunjun Lee, Yongjun Park, "Efficient Image Super-Resolution Using Dynamic Quality Control with Recursive Model Structures," IEEE Access, 2025.
Hee Won Seo*, Young Jae Oh*, Jaehoon Oh, Dong Keon Lee, Seung Hwan Lee, Jae Ho Chung, Tae Hyun Kim, "Prediction of hearing recovery with deep learning algorithm in sudden sensorineural hearing loss," Scientific Reports. 2024. [pdf]
Jinsu Yoo, Jihoon Nam, Sungyong Baik, Tae Hyun Kim, "Looking Beyond Input Frames: Self-Supervised Adaptation for Video Super-Resolution," Pattern Recognition. 2024. [pdf]
Seung Hyun Kim*, Yoon Ju Oh*, Joonhyuk Son*, Donggoo Jung, Daehyun Kim, Soo Rack Ryu, Jae Yoon Na, Jae Kyoon Hwang, Tae Hyun Kim, Hyun-Kyung Park, "Machine Learning-based Analysis for Prediction of Surgical Necrotizing Enterocolitis in Very Low Birth Weight Infants Using Perinatal Factors: A Nationwide Cohort Study," European Journal of Pediatrics. 2024.
Jae-Won Lee, Jong-Hyun Won, Seonggwang Jeon, Yujin Choo, Yubin Yeon, Jin-Seon Oh, Minsoo Kimm, SeonHwa Kim, InSuk Joung, Cheongjae Jang, Sung Jong Lee, Tae Hyun Kim, Kyong Hwan Jin, Giltae Song, Eun-Sol Kim, Jejoong Yoo, Eunok Paek, Yung-Kyun Noh, Keehyoung Joo, "DeepFold: Enhancing Protein Structure Prediction through Optimized Loss Functions, Improved Template Features, and Re-optimized Energy Function," Bioinformatics, 2023. [pdf]
Jae Yoon Na*, Donggoo Jung*, Jong Ho Cha, Daehyun Kim, Joonhyuk Son, Jae Kyoon Hwang, Tae Hyun Kim, Hyun-Kyung Park, "Learning-based longitudinal prediction models for mortality risk in very-low-birth-weight infants: A nationwide cohort study," Neonatology, 2023. [pdf]
Jae Kyoon Hwang*, Dae Hyun Kim*, Jae Yoon Na, Joonhyuk Son, Yoon Ju Oh, Donggoo Jung, Chang-Ryul Kim, Tae Hyun Kim, Hyun-Kyung Park, "Two-stage Learning-based Prediction of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants: A Nationwide Cohort Study," Frontiers in Pediatrics, 2023. [pdf]
Dong Keon Lee*, Jin Hyuk Kim*, Jaehoon Oh, Tae Hyun Kim, Myeong Seong Yoon, Dong Jin Im, Jae Ho Chung, Hayoung Byun, "Detection of acute thoracic aortic dissection based on plain chest radiography and a residual neural network (Resnet)," Scientific Reports, 2022. [pdf]
Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun Kim, Kyoung Mu Lee, "Test-Time Adaptation for Video Frame Interpolation via Meta-Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2022. [pdf] [project page]
Hayoung Byun, Seung Hwan Lee, Tae Hyun Kim, Jaehoon Oh, Jae Ho Chung, "Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience," Journal of Personalized Medicine, 2022. [pdf]
Heui Chul Jung*, Changjin Kim*, Jaehoon Oh, Tae Hyun Kim, Beomgyu Kim, Juncheol Lee, Jae Ho Chung, Hayoung Byun, Myeong Seong Yoon, Dong Keon Lee, "Position Classification of the Endotracheal Tube with Automatic Segmentation of the Trachea and the Tube on Plain Chest Radiography Using Deep Convolutional Neural Network," Journal of Personalized Medicine, 2022. [pdf]
Byungjoo Chae, Jinsun Park, Tae Hyun Kim, Donghyeon Cho, "Online Learning for Reference-Based Super-Resolution," Electronics, 2022. [pdf]
Joonhyuk Son*, Daehyun Kim*, Jae Yoon Na, Donggoo Jung, Ja-Hye Ahn, Tae Hyun Kim, Hyun-Kyung Park, "Development of artificial neural networks for early prediction of intestinal perforation in preterm infants," Scientific Reports, 2022. [pdf]
Jonathan Samuel Lumentut, Matthew Marchellus, Joshua Santoso, Tae Hyun Kim, Ju Yong Chang, In Kyu Park, "Universal Framework for Joint Image Restoration and 3D Body Reconstruction," IEEE Access, 2021. [pdf]
Junwon Bae*, Sangjoon Yu*, Jaehoon Oh, Tae Hyun Kim, Jae Ho Chung, Hayoung Byun, Myeong Seong Yoon, Chiwon Ahn, Dong Keon Lee, "External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray," Journal of Digital Imaging, 2021. [pdf]
Hayoung Byun*, Sangjoon Yu*, Jaehoon Oh, Junwon Bae, Myeong Seong Yoon, Seung Hwan Lee, Jae Ho Chung, Tae Hyun Kim, "An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases," Journal of Clinical Medicine, 2021. [pdf]
Jonathan Samuel Lumentut, Tae Hyun Kim, Ravi Ramamoorthi, In Kyu Park, "Deep recurrent network for fast and full-resolution light field deblurring," IEEE Signal Processing Letters, 2019. [pdf]
Tae Hyun Kim, Seungjun Nah, Kyoung Mu Lee, "Dynamic Video Deblurring Using a Locally Adaptive Blur Model," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2018. [pdf] [project page]
Registration
10-2024-0043705 () 이미지 복잡도에 따른 적응적 이미지 초해상화 방법 및 영상처리장치
10-2781111 (2025.03.10) METHOD AND APPARTUS FOR LEARNING OF HAZE DEGRADATION FRAMWORK (헤이즈 제거 프레임워크의 학습 방법 및 그 장치)
10-2764902 (2025.02.04) SEMANTIC-AWARE VIDEO INPAINTING METHOD AND APPARATUS (의미 기반의 동영상 인페인팅 방법 및 장치)
10-2548407 (2023.06.22) METHOD AND APPARATUS FOR PROGRESSIVE IMAGE RESOLUTION IMPROVEMENT USING NEURAL ORDINARY DIFFERENTIAL EQUATION, AND IMAGE SUPER-RESOLUTION METHOD USING THE SMAE (뉴럴 네트워크가 포함된 상미분 방정식을 이용하는 점진적 이미지 해상도 향상 방법 및 장치와 이를 이용하는 이미지 초해상도 방법)
10-2521544 (2023.04.10) METHOD FOR TRAINING A DENOISING NETWORK, METHOD AND DEVICE FOR OPERATING IMAGE PROCESSOR (디노이징 네트워크의 학습 방법, 및 이미지 처리 방법 및 그 장치 방법)
10-2493492 (2023.01.25) METHOD AND DEVICE FOR FAST ADAPTATION THROUGH META-LEARNING OF SUPER RESOLUTION MODEL (초해상도 모델의 메타 러닝을 통한 빠른 적응 방법 및 장치)
10-245335 (2022.10.07) METHOD AND APPARATUS FOR RESTORING LOW RESOLUTION OF VIDEO TO HIGH RESOLUTION DATA BASED ON SELF-SUPERVISED LEARNING (자기지도학습 기반 저화질 영상 데이터의 고해상도 복원 방법)
Application
10-2025-0091562 (2025.07.08) 이미지를 보정하는 장치 및 그 방법
10-2025-0044261 (2025.04.04) 인공지능 모델을 이용한 노이즈 제거 장치 및 그 방법
10-2024-0198603 (2024.12.27) 영상 처리 장치 및 영상 처리 방법
10-2024-0180252 (2024.12.06) 메타데이터 비의존 노이즈 이미지 생성 시스템 및 방법
10-2024-0043705 (2024.03.29) 이미지 복잡도에 따른 적응적 이미지 초해상화 방법 및 영상처리장치
10-2024-0043687 (2024.03.29) 메타 학습 기반의 비디오 안정화 방법 및 영상처리장치
10-2024-0027508 (2024.02.26) 상미분 방정식을 기반으로 이미지 밝기를 조정하는 이미지 신호 프로세서의 동작 방법, 상기 이미지 신호 프로세서를 포함하는 전자 장치 및 상기 전자 장치의 동작 방법
10-2023-0175637 (2023.12.06) 이상 탐지를 위한 의미 인식 정규화 플로우 시스템 및 그 방법
10-2023-0109478 (2023.08.22) 헤이즈 제거 프레임워크의 학습 방법 및 그 장치
10-2023-0102363 (2023.08.04) 의미 기반의 동영상 인페인팅 방법 및 장치
10-2022-0186535 (2022.12.28) 임의 배율의 실세계 초해상도화를 위한 데이터 셋 생성 방법
10-2022-0136710 (2022.10.21) Semantic Feature Guidance를 활용한 Flow-based 모델의 이미지 생성능력 향상 장치 및 방법
10-2022-0105877 (2022.08.29) 합성 노이즈 이미지 생성 방법 및 장치
10-2021-0073710 (2021.06.07) 뉴럴 네트워크가 포함된 상미분 방정식을 이용하는 점진적 이미지 해상도 향상 방법 및 장치와 이를 이용하는 이미지 초해상도 방법
10-2021-0041341 (2021.03.30) 딥러닝기반 영상 데이터의 생성과 처리 방법 및 장치
10-2020-0033091 (2020.03.18) 디노이징 네트워크의 학습 방법, 및 이미지 처리 방법 및 그 장치 방법
10-2021-0034757 (2021.03.17) 자기지도학습 기반 저화질 영상 데이터의 고해상도 복원 방법
10-2021-0033501 (2021.03.15) 이미지 인페인팅 신경망의 고속 적응을 위한 장치 및 방법
10-2020-0170771 (2020.12.08) 자기 지도 학습을 통한 이미지 및 동영상 화질 개선
10-2020-0129663 (2020.10.07) 미리 학습된 이미지 인페인팅 신경망을 파인튜닝하기 위한 장치 및 방법
10-2020-0033090 (2020.03.18) 초해상도 모델의 메타 러닝을 통한 빠른 적응 방법 및 장치