[Authors marked with * conducted the work during their PhD studies under my supervision.]
Gu. Z.*, Yu, S., Wang, G. and Wang, L. (2025+). Boosting AI-generated biomedical images with confidence through advanced statistical inference. Journal of the American Statistical Association, Theory and Methods. Special Issue on Statistical Science in AI. Forthcoming. DOI: 10.1080/01621459.2025.2552510 [Read PDF]
Kim, M.*, Wang, L. and Wang, H. (2025+). Estimation and inference of quantile spatially varying coefficient models over complicated domains. Journal of the American Statistical Association, Theory and Methods. Forthcoming. DOI: 10.1080/01621459.2025.2480867 [Read PDF] [Code]
Long, Y.*, Cao, G., Kepplinger, D. and Wang, L. (2025+). Robust mean signal estimation and inference for imaging data. Statistica Sinica. Forthcoming. [Yang Long won runner-up of the Statistical Methods in Imaging Conference 2025 Student Paper Competition]
Gu. Z.*, Li, X., Wang, G. and Wang, L. (2025+). Spatiotemporal heterogeneity learning: Generalized spatiotemporal semi-varying coefficient models with structure identification. Journal of Time Series Analysis. Forthcoming.
Das, K.*, Yu, S., Wang, G. and Wang, L. (2025). Nonparametric density estimation for scattered spatial data on irregular domains: A likelihood-based approach using bivariate penalized spline smoothing. Journal of Nonparametric Statistics. Forthcoming. [Read PDF] [Supplemental]
Gu. Z.*, Yu, S., Wang, G., Lai, M. J. and Wang, L. (2025). TSSS: A novel triangulated spherical spline smoothing for surface-based imaging. Journal of Nonparametric Statistics, 37(3), 683-712. DOI: 10.1080/10485252.2025.2449886 [Read PDF] [Supplemental] [Zhiling Gu won runner-up of the Statistical Methods in Imaging Conference 2023 Student Paper Competition]
Wang, G., Wang, Y.*, Gao, A. and Wang, L. (2025). Efficient nonparametric estimation of 3D point cloud signals through distributed learning. Journal of Computational and Graphical Statistics, 34(2), 746-758. [Read PDF] [Supplemental]
Wang, Y.*, Wang, G., Klinedinst, B., Willette, A. and Wang, L. (2025). Statistical inference for mean functions of complex 3D objects. Statistica Sinica, 35, 1-25. DOI: 10.5705/ss.202023.0071 [Read PDF]
Hong, Y.A., Shen, K., Han, H.R., Hepburn, K., Wang, L., Lu, H.K., Park, V.T. and Chi, I. (2025). Two-year follow-up of Dementia caregivers after a digital health intervention WECARE: A mixed-method study. Aging & Mental Health, 29(4), 631-638.
Yu, S., Wang, G. and Wang, L. (2025). Distributed heterogeneity learning for generalized partially linear models with spatially varying coefficients. Journal of the American Statistical Association, Theory and Methods, 120(550), 779-793. [Read PDF] [Code]
[Authors marked with * conducted the work during their PhD studies under my supervision.]
Li, X., Yu, S., Wang, Y.*, Wang, G., Wang, L. and Lai, M. J. (2024). Nonparametric regression for 3D point cloud learning. Journal of Machine Learning Research, 25(102):1–56. [Read PDF]
Wang, L., Wang, G. and Gao, A. (2024). Exploring heterogeneity and dynamics of meteorological influences on US PM2.5: A distributed learning approach with spatiotemporal varying coefficient models. Spatial Statistics, 61, 100826 [Read PDF]
Li, X., Freeman, N. and Wang, L. (2024). Q-Learning Based Methods for Dynamic Treatment Regimes. In Zhao, Y. and Chen, D. (Eds.). Precision Health: Theory, Methods and Applications. Springer Nature.
Kuhlmann, D., Rongerude, J., Das, B. and Wang, L. (2024). Rental property owner stress during the Covid-19 pandemic: Results from a Minneapolis, MN survey. Housing and Society, 51(1), 4–33. DOI: 10.1080/08882746.2023.2227541 [Read PDF]
Velma, K. L., et al. (2024). Challenges of COVID-19 case forecasting in the US, 2020-2021. PLOS Computational Biology, 20(5): e1011200.
[Authors marked with * conducted the work during their PhD studies under my supervision.]
Yu, S.*, Kusmec, A., Wang, L. and Nettleton, D. (2023). Sparse modeling of functional linear regression via fused lasso with application to genotype-by-environment Interaction studies. Journal of Agricultural, Biological and Environmental Statistics, 28, 401–422. DOI: 10.1007/s13253-023-00529-2 [Read PDF]
Wang, G., Gu, Z.*, Li, X.*, Yu, S.*, Kim, M.*, Wang, Y.*, Gao, L. and Wang, L. (2023). Comparing and integrating US COVID-19 data from multiple sources with anomaly detection and repairing. Journal of Applied Statistics, 50, 2408–2434. DOI: 10.1080/02664763.2021.1928016. [Read PDF]
Kuhlmann, D., Rongerude, J., Wang, L. and Wang, G. (2023). A Statistical Machine Learning Approach to Identify Rental Properties from Public Data Sources. Cityscape, 25 (2), 367–378. [Read PDF]
[Authors marked with * conducted the work during their PhD studies under my supervision.]
Yu, S.*, Wang, Y.*, Wang, L. and Gao, L. (2022). Spatiotemporal autoregressive partially linear varying coefficient models. Statistica Sinica, 32, 2119-2146. DOI:10.5705/ss.202020.0383 [Read PDF]
Wang, Y.*, Kim, M.*, Yu, S.*, Li, X., Wang, G. and Wang, L. (2022). Nonparametric estimation and inference for spatiotemporal epidemic models. Journal of Nonparametric Statistics, 34 (3), 683-705. DOI: 10.1080/10485252.2021.1988084 [Read PDF]
Cramer, E. Y., et al. (2022). Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US. Proceedings of the National Academy of Sciences, 119 (15), e2113561119. [Read PDF]
Zhang, T., Zhou, Y., Wang, L., Zhao, K. and Zhu, Z. (2022). Estimating 1 km gridded daily air temperature using a spatially varying coefficient model with sign preservation. Remote Sensing of Environment, 277, 113072. [Read PDF]
Zhang, T., Zhou, Y., Zhao, K., Zhu, Z., Chen, G., Hu, J., and Wang, L. (2022). A global dataset of daily near-surface air temperature at 1-km resolution (2003–2020). Earth System Science Data, 14, 5637–5649. DOI: 10.5194/essd-14-5637-2022 [Read PDF].
[Authors marked with * conducted the work during their PhD studies under my supervision.]
Li, X.*, Wang, L. and Wang, H. (2021). Sparse learning and structure identification for ultra-high-dimensional image-on-scalar regression. Journal of the American Statistical Association, Theory and Methods, 116, 1994-2008. [Read PDF]
Kim, M.*, Gu, Z.*, Yu, S.*, Wang, G., and Wang, L. (2021). Methods, challenges, and practical issues of COVID-19 projection: a data science perspective. Journal of Data Science,19 (2), 219-242. [Read PDF] [Philosophy of Data Science]
Wang, L., Wang, G., Li, X., Yu, S.*, Kim, M.*, Wang, Y.*, Gu, Z.* and Gao, L. (2021). Modeling and forecasting COVID-19. AMS: Notices Of The American Mathematical Society, 68, 585-595. [Read PDF]
Kim, M.*, Wang, L. and Zhou, Y. (2021). Spatially varying coefficient models with sign preservation of the coefficient functions. Journal of Agricultural, Biological, and Environmental Statistics, 26, 367-386 [Read PDF]
Yu, S.*, Wang, G. and Wang, L. (2021). Discussion of "Evaluate the risk of resumption of business for the states of New York, New Jersey and Connecticut via a pre-symptomatic and asymptomatic transmission model of COVID-19". Journal of Data Science. [Read PDF]
Yu, S.*, Wang, G., Wang, L. and Yang, L. (2021). Multivariate spline estimation and inference for image-on-scalar regression. Statistica Sinica, 31, 1463-1487. [Read PDF] [An early version was selected as one of three runners-up of 2019 ASA Statistics in Imaging Section Student Paper Competition]
Kim, M.* and Wang, L. (2021). Generalized spatially varying coefficient models. Journal of Computational and Graphical Statistics, 30, 1-10. [Read PDF]
Wang, Y.*, Wang, G.*, Wang, L. and Ogden, T. (2020). Simultaneous confidence corridors for mean functions in functional data analysis of imaging data. Biometrics, 76, 427-437. [Read PDF] & R package
Yu, S.*, Wang, G.*, Wang, L., Liu, C.* and Yang, L. (2019). Estimation and inference for generalized geoadditive models. Journal of the American Statistical Association, Theory and Methods, 115, 761-774. [Read PDF] & R package
Wang, L., Wang, G.*, Lai, M. J. and Gao, L. (2020). Efficient estimation of partially linear models for data on complicated domains by bivariate penalized splines over triangulations. Statistica Sinica, 30, 347-369. [Read PDF] & R package
Klinedinst, B.S., Le, S.T., Larsen, B., Pappas, C., Hoth, N.J., Pollpeter, A., Wang, Q., Wang, Y.*, Yu, S.*, Wang, L., Allenspach, K., Mochel, J.P., Bennett, D.A. and Willette, A.A. (2020). Genetic factors of Alzheimer’s disease modulate how diet is associated with long-term cognitive trajectories: A UK Biobank Study. Journal of Alzheimer’s Disease, 78, 1245-1257. [Read PDF]
Cao, G., Wang, S. and Wang, L. (2020). Estimation and inference for functional linear regression models with partially varying regression coefficients. Stat, 9, e286 [Read PDF]
Klinedinst, B.S., Meierc, N.F., Larsen, B., Wang, Y.*, Yu, S.*, Mocheld, J.P., Scott, L., Wolff, T., Pollpeterg, A., Pappas, C., Wang, Q., Allenspach, K., Wang, L., Russelli, D., Bennett, D.A., Willette, A.A. (2020). Walking in the light: How history of physical activity, sunlight, and vitamin D account for body fat -- a UK Biobank study. Obesity, 28, 1428-1437. [Read PDF]
Wang, J., Cao, G., Wang, L. and Yang, L. (2020). Simultaneous confidence band for stationary covariance function of dense functional data. Journal of Multivariate Analysis. 176. [Read PDF]
Mu, J., Wang, G. and Wang, L. (2020). Efficient estimation and model identification for spatially varying coefficient autoregressive models. Journal of Nonparametric Statistics, 32, 428-451. [Read PDF]
Klinedinst, B., Pappas, C., Le, S., Yu, S.*, Wang, Q., Wang, L., Allenspach, K., Mochel, J. and Willette, A. (2019). Aging-related changes in fluid intelligence, muscle and adipose mass, and sex-specific immunologic mediation: a longitudinal UK Biobank study. Brain, Behavior, and Immunity, 82, 396-405. Read PDF
Li, X.*, Wang, L. and Nettleton, D. (2019a). Additive partially linear models for ultra-high-dimensional regression. Stat, 8. e223. Read PDF
Li, X.*, Wang, L. and Nettleton, D. (2019b). Sparse model identification and learning for ultra-high-dimensional additive partially linear models. Journal of Multivariate Analysis, 173, 204-228. Read PDF
Song, X., Wang, L., Ma, S. and Huang, H. (2019). Variable selection for partially linear proportional hazards model with covariate measurement error. Journal of Nonparametric Statistics, 31, 196-220. Read PDF
Datta, G. S., Delaigle, A., Hall, P. and Wang, L. (2018). Semi-parametric prediction intervals in small areas when auxiliary data are measured with error. Statistica Sinica, 28, 2309-2335. Read PDF
Cao, G. and Wang, L. (2018). Simultaneous inference for the mean of repeated functional data. Journal of Multivariate Analysis, 165, 279-295. Read PDF
Wang, L. and Cao, G. (2018). Efficient estimation for generalized partially linear single-index models. Bernoulli, 24, 1101-1127. Read PDF
Mu, J.*, Wang, G.* and Wang, L. (2018). Estimation and inference in spatially varying coefficient models. Environmetrics, 29:e2485. Read PDF & R package
Yin, S., Zhu, Z., Wang, L., Liu, B., Xie, Y., Wang, G.* and Li, Y. (2018). Regional soil erosion assessment based on a sample survey and geostatistics. Hydrology and Earth System Sciences, 22, 1695-1712. Read PDF
Song, X. and Wang, L. (2017). Partially time-varying coefficient proportional hazards models with error-prone time-dependent covariates: an application to the AIDS Clinical Trials Group 175 Data. Annals of Applied Statistics, 11, 274-296. Read PDF
Cao, G., Wang, L., Li, Y. and Yang, L. (2016). Oracle-efficient confidence envelopes for covariance functions in dense functional data. Statistica Sinica, 26, 359-383. Read PDF
Wang, G.* and Wang, L. (2015). Spline estimation and variable selection for single-index prediction models with a diverging number of index parameters. Journal of Statistical Planning and Inference, 162, 1-19. Read PDF
Wang, L., Wang, S. and Wang, G.* (2014). Variable selection and estimation for longitudinal survey data. Journal of Multivariate Analysis, 130, 409-424. Read PDF
Gu, L., Wang, L., Hardle, W. and Yang, L. (2014). Simultaneous confidence corridor for varying coefficient regression with sparse functional data. Test, 23, 806-843. Read PDF
Wang, L., Xue, L., Qu, A. and Liang, H. (2014). Estimation and model selection in generalized additive partial linear models for correlated data with a diverging number of covariates. The Annals of Statistics, 42, 592-624. Read PDF
Lai, M. J. and Wang, L. (2013). Bivariate penalized splines for regression. Statistica Sinica, 23, 1399-1417. Read PDF & R package & Blog introduction
Ma, S., Song, Q. and Wang, L. (2013). Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data. Bernoulli, 19, 252-274. Read PDF
Cao, G., Wang, J., Wang, L. and Todem, D. (2012). Spline confidence bands for functional derivatives. Journal of Statistical Planning and Inference, 142, 1557-1570. Read PDF
Wang, L., Feng, C.*, Song, Q., Yang, L. (2012). Efficient semiparametric GARCH modeling of financial volatility. Statistica Sinica, 22, 249-270. Read PDF
Wang, L., Liu X., Liang, H. and Carroll, R. J. (2011). Estimation and variable selection for generalized additive partial linear models. The Annals of Statistics, 39, 1827-1851. Read PDF
Wang, L. and Wang, S. (2011). Nonparametric additive model-assisted estimation for survey data. Journal of Multivariate Analysis, 102, 1126-1140. Read PDF
Wang, L. (2011). A nonparametric analysis of environmental Kutznets curves. Environmetrics, 22, 420-430. Read PDF
Liu, X., Wang, L. and Liang, H. (2011). Estimation and variable selection for semiparametric additive partial linear models. Statistica Sinica, 21, 1225-1248. Read PDF
Gao, L. and Wang, L. (2011). Security price responses to unexpected earnings: a nonparametric investigation. Statistical Methods and Applications, 20, 241-258. Read PDF
Wang, L. and Yang, L. (2010). Simultaneous confidence bands for time series prediction function. Journal of Nonparametric Statistics, 22, 999-1018. Read PDF
Wang, L. (2009). Single-index model-assisted estimation in survey sampling. Journal of Nonparametric Statistics, 21, 487-504. Read PDF
Wang, L. and Yang, L. (2009). Spline estimation of single-index models. Statistica Sinica, 19, 765-783. Read PDF
Huang X., Wang, L., Yang, L. and Kravchenko, A. N. (2008). Management practice effects on relationships of grain yields with topography and precipitation. Agronomy Journal, 100, 1463-1471. Read PDF
Wang, L. and Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive autoregression model. The Annals of Statistics, 35, 2474-2503. Read PDF
Wang, L. and Liang, H. (2004). Strong uniform convergence for the improved estimator of the regression function under phi-mixing conditions. Metrika, 59, 245-261. Read PDF
Liang, H. and Wang, L. (2001). Convergence rates in the law of large numbers for B-valued random elements. Acta Mathematica Scientia, Series B, 21, 229-236. Read PDF
Li, X., Yu, S., Wang, Y., Wang, G. and Wang, L. (2021). Spline smoothing of 3D geometric data. [arXiv:2106.04255]
Yu, S., Wang, L., Wang, G. and Yang, L. (2021). Multivariate spline estimation and inference for image-on-scalar regression. [arXiv:2106.01431]
Wang, Y., Wang, G., Wang, L. and Ogden, T. (2020). Simultaneous confidence corridors for mean functions in functional data analysis of imaging data. [arXiv:2106.01431]
Wang, L., Wang, G., Gao, L., Li, X., Yu, S. Kim, M., Wang, Y. and Gu, Z. (2020). Spatiotemporal dynamics, nowcasting and forecasting of COVID-19 in the United States. [arXiv:2004.14103] Supplementary Materials.
Wang, J., Cao, G., Wang, L. and Yang, L. (2019). Simultaneous confidence band for stationary covariance function of dense functional
data. [arXiv:1903.05522]
Li, X., Wang, L. and Nettleton, D. (2018). Sparse model identification and learning for ultra-high-dimensional additive partially linear models. [arXiv:1811.00488]
Wang, L., Wang, G., Lai, M. J. and Gao, L. (2016). Efficient estimation of partially linear models for spatial data over complex domains. [arXiv:1605.08737]
Wang, L. and Wang, S. (2011). Nonparametric additive model-assisted estimation for survey data. [arXiv:1101.0831]
Wang, L. (2009). Single-index model-assisted estimation in survey sampling. Manuscript. Read Full Version
Wang, L. and Yang, L. (2007a). Spline single-index prediction model. [arXiv:0704.0302]
Wang, L. and Yang, L. (2007b). Spline-backfitted kernel smoothing of nonlinear additive autoregression model. [arXiv:math/0612677]