Stobb MT, Neeves KB, Monroe DM, Sindi SS, Leiderman K, Fogelson AL. Mathematical modeling identifies clotting factor combinations that modify thrombin generation in normal and factor VIII-, IX-, or XI-deficient blood. Research and Practice in Thrombosis and Haemostasis. 2024 Oct 1;8(7):102570.
Santiago F, Kaur A, Bride S, Monroe D, Leiderman K, Sindi S. A new look at TFPI inhibition of factor X activation. PLoS computational biology. 2024 Nov 15;20(11):e1012509.
Miyazawa K, Mast AE, Wufsus AR, Dockal M, Kjalke M, Leiderman K. Examining downstream effects of concizumab in hemophilia A with a mathematical modeling approach. Journal of Thrombosis and Haemostasis. 2024 Nov 12.
Madrigal J, Monroe DM, Sindi SS, Leiderman K. Modeling the distribution of enzymes on lipid vesicles: A novel framework for surface-mediated reactions in coagulation. Mathematical Biosciences. 2024 Jun 6:109229. https://doi.org/10.1016/j.mbs.2024.109229
Bonner X, Sondgeroth A, McCue A, Nicely N, Tripathy A, Spielvogel E, Moeser M, Ke R, Leiderman K, Joseph SB, Swanstrom R. Stoichiometry for entry and binding properties of the Env protein of R5 T cell-tropic HIV-1 and its evolutionary variant of macrophage-tropic HIV-1. Mbio. 2024 Apr 10;15(4):e00321-24. https://doi.org/10.1128/mbio.00321-24
Montgomery D, Municchi F, Leiderman K. clotFoam: An Open-Source Framework to Simulate Blood Clot Formation Under Flow. SoftwareX July 2023. Jul 1;23:101483. https://doi.org/10.1016/j.softx.2023.101483
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J. 2023 Jan 3; 122(1):99-113. doi:10.1016/j.bpj.2022.11.023.
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: AT and Heparin. Biophys J. 2023 Jan 3; 122(1):230-240. doi:10.1016/j.bpj.2022.10.038.
Kelley, M.A., and K. Leiderman. Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization. PLOS Comp. Biol. Sept. 2022. Here
Nelson, A. C., Kelley, M. A., Haynes, L. M., & K. Leiderman. Mathematical models of fibrin polymerization: Past, present, and future. Current Opinion in Biomedical Engineering. 2021. Here
K.G. Link, M.T. Stobb, D.M. Monroe, A.L. Fogelson, K.B. Neeves, S.S. Sindi, K. Leiderman. Computationally Driven Discovery in Coagulation. Arter. Thromb. Vasc. 2021 Jan;41(1):79-86. Here
D. Carney, K. Leiderman, R. Swanson, Society for Women in Mathematics at Mines, Association for Women in Mathematics: The First Fifty Years, Springer, Accepted.
K. Leiderman, S.S. Sindi, D.M. Monroe, A.L. Fogelson, K.B. Neeves. The Art and Science of Building a Computational Model of Hemostasis. Semin. Thromb. Hemost. 26 Feb 2021, 47(2):129-138. Here
K.G. Link, N.A. Danes, M.G Sorrells, K.B. Neeves, K. Leiderman, A.L. Fogelson. A mathematical model of platelet aggregation in an extravascular injury under flow. SIAM Multiscale Model Simul. 18.4 (2020): 1489-1524. Here
Mannan, F.O., Jarvela, M., and Leiderman, K., 2020. A Minimal Model of the Hydrodynamical Coupling of Flagella on a Spherical Body. Phys. Rev. E 102, 033114. Here
Mannan, F.O. and Leiderman, K., 2020. Weak inertial effects on arbitrarily shaped objects in the presence of a wall. Physical Review Fluids, 5(4), p.044102. Here.
K.G. Link, M.T. Stobb, M.G. Sorrells, M. Bortot, K. Ruegg, K., M.J. Manco‐Johnson, J.A. Di Paola, S.S. Sindi, A. L. Fogelson, K. Leiderman, and K.B. Neeves. A mathematical model of coagulation under flow identifies factor V as a modifier of thrombin generation in hemophilia A. J. Thromb. Haemost., 2019. Here
M. Kelley and K. Leiderman. A mathematical model of bivalent binding suggests physical trapping of thrombin within fibrin fibers." Biophys. J., 2019; Here
M.T. Stobb, D.M. Monroe, S.S. Sindi, and K. Leiderman. Assessing the impact of product inhibition in a chromogenic assay. Analytical Biochemistry. https://www.sciencedirect.com/science/article/pii/S0003269719302167
N. Danes, K. Leiderman. A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation. Int. J. Numer. Meth. Biomed. Eng. https://doi.org/10.1002/cnm.3212
N. Ho, K. Leiderman and S.D. Olson. A 3-dimensional model of flagellar swimming in a Brinkman Fluid. Submitted to: J. Fluid Mech. Accepted. https://doi.org/10.1017/jfm.2019.36
H.N. Nguyen, S.D. Olson and K. Leiderman. Computation of a regularized Brinkmanlet near a plane wall. 2018; J. Eng. Math. Accepted. https://link.springer.com/article/10.1007/s10665-018-9980-8
K.G. Link, M.T. Stobb, J.A. Di Paola, K.B. Neeves, A.L. Fogelson, S.S. Sindi, and K. Leiderman. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS ONE, 2018; 13(7): e0200917. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200917
Buchmann, A.L. Fauci, L.J., Leiderman, K., Strawbridge, E.M, and Zhao, L. Mixing and pumping by pairs of helices in a viscous fluid. Phys. Rev. E, 2018; 97 (2), 023101. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.023101
K. Leiderman, B.E. Bannish, M.A. Kelley, and A.M. Palmisano. Mathematical models of thrombus formation and fibrinolysis. Chapter in: Cardiovascular thrombus: from pathology and clinical presentations to imaging, pharmacotherapy and interventions, Springer, 2018. https://goo.gl/8b5CyV
R.M. Schoeman, K. Rana, N. Danes, M. Lehmann, J.A. Di Paola, A.L. Fogelson, K. Leiderman, K.B. Neeves. A microfluidic model of hemostasis sensitive to platelet function and coagulation. Cell. Mol. Bioeng., 2017; 10(1):3-15. https://link.springer.com/article/10.1007/s12195-016-0469-0
Winner of 2018 CMBE Editors’ Choice Award!
K. Leiderman, W.C. Chang, M. Ovanesov, and A.L. Fogelson. Synergy Between Tissue Factor and Factor XIa in Initiating Coagulation. Arterioscler. Thromb. Vasc. Biol., 2016: ATVB-116. https://www.ahajournals.org/doi/abs/10.1161/ATVBAHA.116.308186
K. Leiderman and S.D. Olson. Swimming in a 2D Brinkman fluid: Computational modeling and regularized solutions. Phys. Fluids, 2016; 28(2):021902. https://aip.scitation.org/doi/abs/10.1063/1.4941258
N. Ho, K. Leiderman and S.D. Olson. Swimming Speeds of Filaments in Viscous Fluids with Resistance. Phys. Rev. E, 2016; 93(4):043108. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.043108
H.N. Nguyen†, K. Leiderman and S.D. Olson. A fast method to compute triply-periodic Brinkman flows. Computer & Fluids, 2016; 133:55-67. https://www.sciencedirect.com/science/article/pii/S0045793016301104
K.B. Neeves and K. Leiderman. Mathematical models of hemostasis, In: Trauma Induced Coagulopathy, Springer, 2016; 567-584. https://link.springer.com/chapter/10.1007/978-3-319-28308-1_35
Buchmann, A.L. Fauci, L.J., Leiderman, K., Strawbridge, E.M, and Zhao, L. Flow induced by bacterial carpets and transport of microscale loads. IMA Proceedings. In: Applications of Dynamical Systems in Biology and Medicine, Springer, 2015; 35-53. https://link.springer.com/chapter/10.1007/978-1-4939-2782-1_2
S.D. Olson and K. Leiderman. Effect of Fluid Resistance on Symmetric and Asymmetric Flagellar Waveforms. J. Aero Aqua Bio-mech., 2015; 4:12-17. https://www.jstage.jst.go.jp/article/jabmech/4/1/4_12/_article/-char/ja/
H.N. Nguyen and K. Leiderman. Computation of the singular and regularized image systems for doubly-periodic Stokes flow in the presence of a wall. J. Comp. Phys. 2015; 297:442-461 https://www.sciencedirect.com/science/article/pii/S0021999115003642
Leiderman, K. and A.L. Fogelson. An Overview of Mathematical Modeling of Thrombus Formation Under Flow. Thromb. Res. 2014; 133(S1):S12-S14. https://www.sciencedirect.com/science/article/pii/S0049384814001303
Leiderman, K., Bouzarth, E.L., H.N. Nguyen. A regularization method for the numerical solution of doubly-periodic Stokes flow. Biological Fluid Dynamics: Modeling, Computations, and Applications, 2014; 628:73. https://goo.gl/wMKdVq
Onasoga A.A., Leiderman, K., Fogelson, A.L., Wang, M., Manco-Johnson, M.J., Di Paola, J.A., and K.B. Neeves. The effect of FVIII deficiencies and replacement and bypass therapies on thrombus formation under venous flow conditions in microfluidic and computational models. PLoS ONE. 2013; 8(11): e78732. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078732
Leiderman, K., Bouzarth, E.L., Cortez, R. and A.T. Layton. A Regularization Method for the Numerical Solution of Periodic Stokes Flow. J. Comp. Phys. 2013; 236:187-202. https://www.sciencedirect.com/science/article/pii/S0021999112005803
Leiderman, K. and A.L. Fogelson. The Influence of Intraclot Transport on the Development of Platelet Thrombi Under Flow. Bull. Math. Biol. Oct., 2012:1-29. https://link.springer.com/article/10.1007/s11538-012-9784-3
Fogelson, A.L., Hussein, Y., and K. Leiderman. The Influence of Thrombin-activated FXIa on Thrombin Production is Predicted to Depend Strongly on Platelet Count. Biophys. J. 2012; 102(1):10-1 https://www.sciencedirect.com/science/article/pii/S0006349511013142
Wolberg, A.S., Aleman, M.M., Leiderman, K, and K.R. Machlus. Procoagulant Activity in Hemostasis and Thrombosis: Virchow’s Triad Revisited. Anesth. Analg. 2012; 114(2):275-285. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264782/
Leiderman, K. and A.L. Fogelson. Grow with the Flow: A Spatial-Temporal Model of Platelet Deposition and Blood Coagulation Under Flow. Math. Med. Biol. 2011; 28(1):47-84. https://academic.oup.com/imammb/article-abstract/28/1/47/679981
Winner of SIAM Student Paper Prize in 2010!
Cortez, R., Cummins, B., Leiderman, K. and D. Varela. Computation of Brinkman Flows Using Regularized Methods. J. Comp. Phys. 229 (2010) 7609-7624. https://www.sciencedirect.com/science/article/pii/S002199911000327X
Leiderman, K., L.A. Miller, and A.L. Fogelson. The Effect of Spatial Inhomogeneities on Flow Through the Endothelial Surface Layer. J. Theor. Biol. 2008; May 21;252(2):313-25. https://www.sciencedirect.com/science/article/pii/S002251930800026X
Leiderman, K. and S.L. Steinberg. High-resolution models of motion of macromolecules in cell membranes. Math. Comput. Simulat. 2008; April 4;77(4):383-399. https://www.sciencedirect.com/science/article/abs/pii/S0378475407001620
Zhang J., Leiderman, K., Pfeiffer, J.R., Wilson, B.S., Oliver, J.M., and S.L. Steinberg. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron. 2006; 37(1):14-34. https://www.sciencedirect.com/science/article/pii/S0968432805000764
Oliver J.M., Pfeiffer, J.R., Surviladze, Z., Steinberg, S.L., Leiderman, K., Sanders, M.L., Wofsy, C., Zhang, Z., Fan, H., Andrews, N., Bunge, S., Boyle, T.J., Kotula, P., and B.S. Wilson. Mem- brane receptor mapping: membrane topography of FcεRI signaling. Subcell. Biochem. 2004; 37:3-34. https://link.springer.com/chapter/10.1007/978-1-4757-5806-1_1
Wilson B.S., Steinberg, S.L., Leiderman, K., Pfeiffer, J.R., Surviladze, J., Zhang, J., Samelson, L.E., Yang, L.H., Kotula, P., and J.M Oliver. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell. 2004; 15(6):2580-92. https://www.molbiolcell.org/doi/abs/10.1091/mbc.E03-08-0574