ORCID 0000-0001-7482-7463 – Scopus Author ID 25630255800 – Google Scholar
[24] S. Lantean, I. Roppolo, M. Sangermano, M. Hayoun, H. Dammak, G. Barrera, P. Tiberto, C. F. Pirri, L. Bodelot, G. Rizza. Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer. Advanced Materials Technologies, June 2022, 2200288. DOI: 10.1002/admt.202200288
[24] B. Poggi, E. Lopez, R. Métivier, L. Bodelot, C. Allain. Mechanofluorochromic Difluoroboron β-Diketonates Based Polymer Composites: Towards Multi-Stimuli Responsive Mechanical Stress Probes. Macromolecular Rapid Communications, May 2022, 43(15): 2200134. DOI: 10.1002/marc.202200134
[23] L. Brusa da Costa Linn, K. Danas, L. Bodelot. Towards 4D printing of very soft heterogeneous magnetoactive layers for morphing surface applications via liquid additive 3 manufacturing. Polymers, April 2022, 14(9): 1684. DOI: 10.3390/polym14091684
[22] B. Poggi, L. Bodelot, M. Louis, R. Métivier, C. Allain. Quantification of mechanofluorochromism at the macroscale via colorimetric analysis of controlled mechanical stimulation. Journal of Materials Chemistry C, July 2021, 9(36): 12111–12117. DOI: 10.1039/d1tc02274a
[21] C. Dorn, L. Bodelot, K. Danas. Experiments and numerical implementation of a boundary value problem involving a magnetorheological elastomer layer subjected to a non-uniform magnetic field. Journal of Applied Mechanics, July 2021, 88(7): 071004. DOI: 10.1115/1.4050534
[20] D. Mukherjee, L. Bodelot, K. Danas. Microstructurally-guided explicit continuum models for isotropic magnetorheological elastomers with iron particles. International Journal of Non-Linear Mechanics, April 2020, 120: 103380. DOI: 10.1016/j.ijnonlinmec.2019.103380
[19] E. Psarra, L. Bodelot, K. Danas. Wrinkling to crinkling transitions and curvature localization in a magnetoelastic film bonded to a non-magnetic substrate. Journal of the Mechanics and Physics of Solids, December 2019, 133: 103734. DOI: 10.1016/j.jmps.2019.103734
[18] L. Bodelot. Investigation of the relationship between microstructural features and strain localization in polycrystalline 316L. Experimental Mechanics, June 2019, 59(5):691–702. DOI: 10.1007/s11340-019-00508-0
[17] L. Bodelot, L. Pavić, S. Hallais, J. Charliac, B. Lebental. Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: in-situ characterization. Scientific Reports, April 2019, 9(1): 5513. DOI: 10.1038/s41598-019-41989-2
[16] A. Maurice, L. Bodelot, B. K. Tay, B. Lebental. Controlled, Low-Temperature Nanogap Propagation in Graphene Using Femtosecond Laser Patterning. Small, July 2018, 14(31): 1801348. DOI: 10.1002/smll.201801348
[15] Q. Kong, L. Bodelot, B. Lebental, Y. D. Lim, L. L. Shiau, B. Gusarov, C. W. Tan, K. Liang, C. Lu, C. S. Tan, P. Coquet, B. K. Tay. Novel three-dimensional carbon nanotube networks as high performance thermal interface materials. Carbon, June 2018, 132: 359–369. DOI: 10.1016/j.carbon.2018.02.052
[14] L. Bodelot, J.-P. Voropaieff, T. Pössinger. Experimental investigation of the coupled magneto-mechanical response in magnetorheological elastomers. Experimental Mechanics, February 2018, 58(2): 207–221. DOI: 10.1007/s11340-017-0334-7
[13] E. Psarra, L. Bodelot, K. Danas. Two-field surface pattern control via marginally stable magnetorheological elastomers. Soft Matter, August 2017, 13(37): 6576–6584. DOI: 10.1039/C7SM00996H
[12] F. Michelis, L. Bodelot, Y. Bonnassieux, B. Lebental. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon, December 2015, 95:1020–1026. DOI: 10.1016/j.carbon.2015.08.103
[11] L. Bodelot, J. P. Escobedo-Diaz, C. P. Trujillo, D. T. Martinez, E. K. Cerreta, G. T. Gray III, G. Ravichandran. Microstructural changes and in-situ observation of localization in OFHC copper under dynamic loading. International Journal of Plasticity, November 2015, 74:58–74. DOI: 10.1016/j.ijplas.2015.06.002
[10] E. Charkaluk, R. Seghir, L. Bodelot, J.-F. Witz, P. Dufrénoy. Microplasticity in Polycrystals: A Thermomechanical Experimental Perspective. Experimental Mechanics, April 2015, 55(4): 741–752. DOI: 10.1007/s11340-014-9921-z
[9] T. Pössinger, C. Bolzmacher, L. Bodelot, N. Triantafyllidis. Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain. Microsystem Technologies, April 2014, 20(4-5): 803–814. DOI: 10.1007/s00542-013-2036-0
[8] L. Bodelot, G. Ravichandran. Experimental determination of a representative texture and insight in the range of significant neighboring interaction via orientation and misorientation statistics. International Journal of Materials Research, February 2014, 105(2): 117–129. DOI: 10.3139/146. 111007
[7] R. Seghir, J.-F. Witz, L. Bodelot, E. Charkaluk, P. Dufrénoy. An improved lagrangian thermography procedure for the quantification of the temperature fields within polycrystals. Quantitative InfraRed Thermography Journal, May 2013, 10(1): 74–95. DOI: 10.1080/17686733.2013.785207
[6] H. G. Salem, W. M. Lee, L. Bodelot, G. Ravichandran, M. A. Zikry. Quasi-Static and High-Strain-Rate Experimental Microstructural Investigation of a High-Strength Aluminum Alloy. Metallurgical and Materials Transactions A, June 2012, 43(6): 1895–1901. DOI: 10.1007/s11661-011-1064-6
[5] R. Seghir, L. Bodelot, E. Charkaluk, P. Dufrénoy. Numerical and experimental estimation of thermomechanical fields heterogeneity at the grain scale of 316L stainless steel. Computational Materials Science, February 2012, 53(1): 464–473. DOI: 10.1016/j.commatsci.2011.08.036
[4] M. Alkhader, L. Bodelot. Large Strain Mechanical Behavior of HSLA-100 Steel Over a Wide Range of Strain Rates. Journal of Engineering Materials and Technology, January 2012, 134(1): 011005, 9 pages. DOI: 10.1115/1.4005268
[3] L. Bodelot, E. Charkaluk, L. Sabatier, P. Dufrénoy. Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by Digital Image Correlation and Infrared Thermography. Mechanics of Materials, November 2011, 43(11): 654–670. DOI: 10.1016/j.mechmat.2011.08.006
[2] L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrénoy. Experimental determination of fully-coupled kinematical and thermal fields at the scale of grains under cyclic loading. Advanced Engineering Materials, September 2009, 11(9): 723–726. DOI: 10.1002/adem.200900035
[1] L. Bodelot, L. Sabatier, E. Charkaluk, P. Dufrénoy. Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Materials Science and Engineering: A, February 2009, 501(1-2): 52–60. DOI: 10.1016/j.msea.2008.09.053