Scala (/ˈskɑːlɑː/ SKAH-lah)[8] is a strong statically typed general-purpose programminlanguage which supports both object-oriented programming and functional programming. Designed to be concise,[9] many of Scala's design decisions are aimed to address criticisms of Java.[7]

Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala provides language interoperability with Java so that libraries written in either language may be referenced directly in Scala or Java code.[10] Like Java, Scala is object-oriented, and uses a syntax termed curly-brace which is similar to the language C. Since Scala 3, there is also an option to use the off-side rule (indenting) to structure blocks, and its use is advised. Martin Odersky has said that this turned out to be the most productive change introduced in Scala 3.[11]

Unlike Java, Scala has many features of functional programming languages like Scheme, Standard ML, and Haskell, including currying, immutability, lazy evaluation, and pattern matching. It also has an advanced type system supporting algebraic data types, covariance and contravariance, higher-order types (but not higher-rank types), and anonymous types. Other features of Scala not present in Java include operator overloading, optional parameters, named parameters, and raw strings. Conversely, a feature of Java not in Scala is checked exceptions, which has proved controversial.[12]

The name Scala is a portmanteau of scalable and language, signifying that it is designed to grow with the demands of its users.[13]

Contents

History

The design of Scala started in 2001 at the École Polytechnique Fédérale de Lausanne (EPFL) (in Lausanne, Switzerland) by Martin Odersky. It followed on from work on Funnel, a programming language combining ideas from functional programming and Petri nets.[14] Odersky formerly worked on Generic Java, and javac, Sun's Java compiler.[14]

After an internal release in late 2003, Scala was released publicly in early 2004 on the Java platform,[15][7][14][16] A second version (v2.0) followed in March 2006.[7]

On 17 January 2011, the Scala team won a five-year research grant of over €2.3 million from the European Research Council.[17] On 12 May 2011, Odersky and collaborators launched Typesafe Inc. (later renamed Lightbend Inc.), a company to provide commercial support, training, and services for Scala. Typesafe received a $3 million investment in 2011 from Greylock Partners.[18][19][20][21]

Platforms and license

Scala runs on the Java platform (Java virtual machine) and is compatible with existing Java programs.[15] As Android applications are typically written in Java and translated from Java bytecode into Dalvik bytecode (which may be further translated to native machine code during installation) when packaged, Scala's Java compatibility makes it well-suited to Android development, more so when a functional approach is preferred.[22]

The reference Scala software distribution, including compiler and libraries, is released under the Apache license.[23]

Other compilers and targets

Scala.js is a Scala compiler that compiles to JavaScript, making it possible to write Scala programs that can run in web browsers or Node.js.[24] The compiler, in development since 2013, was announced as no longer experimental in 2015 (v0.6). Version v1.0.0-M1 was released in June 2018 and version 1.1.1 in September 2020.[25]

Scala Native is a Scala compiler that targets the LLVM compiler infrastructure to create executable code that uses a lightweight managed runtime, which uses the Boehm garbage collector. The project is led by Denys Shabalin and had its first release, 0.1, on 14 March 2017. Development of Scala Native began in 2015 with a goal of being faster than just-in-time compilation for the JVM by eliminating the initial runtime compilation of code and also providing the ability to call native routines directly.[26][27]

A reference Scala compiler targeting the .NET Framework and its Common Language Runtime was released in June 2004,[14] but was officially dropped in 2012.[28]

Features (with reference to Java)

Scala has the same compiling model as Java and C#, namely separate compiling and dynamic class loading, so that Scala code can call Java libraries.

Scala's operational characteristics are the same as Java's. The Scala compiler generates byte code that is nearly identical to that generated by the Java compiler.[15] In fact, Scala code can be decompiled to readable Java code, with the exception of certain constructor operations. To the Java virtual machine (JVM), Scala code and Java code are indistinguishable. The only difference is one extra runtime library, scala-library.jar.[30]

Scala adds a large number of features compared with Java, and has some fundamental differences in its underlying model of expressions and types, which make the language theoretically cleaner and eliminate several corner cases in Java. From the Scala perspective, this is practically important because several added features in Scala are also available in C#.

Syntactic flexibility

As mentioned above, Scala has a good deal of syntactic flexibility, compared with Java. The following are some examples:

  • Semicolons are unnecessary; lines are automatically joined if they begin or end with a token that cannot normally come in this position, or if there are unclosed parentheses or brackets.

  • Any method can be used as an infix operator, e.g. "%d apples".format(num) and "%d apples" format num are equivalent. In fact, arithmetic operators like + and << are treated just like any other methods, since function names are allowed to consist of sequences of arbitrary symbols (with a few exceptions made for things like parens, brackets and braces that must be handled specially); the only special treatment that such symbol-named methods undergo concerns the handling of precedence.

  • Methods apply and update have syntactic short forms. foo()—where foo is a value (singleton object or class instance)—is short for foo.apply(), and foo() = 42 is short for foo.update(42). Similarly, foo(42) is short for foo.apply(42), and foo(4) = 2 is short for foo.update(4, 2). This is used for collection classes and extends to many other cases, such as STM cells.

  • Scala distinguishes between no-parens (def foo = 42) and empty-parens (def foo() = 42) methods. When calling an empty-parens method, the parentheses may be omitted, which is useful when calling into Java libraries that do not know this distinction, e.g., using foo.toString instead of foo.toString(). By convention, a method should be defined with empty-parens when it performs side effects.

  • Method names ending in colon (:) expect the argument on the left-hand-side and the receiver on the right-hand-side. For example, the 4 :: 2 :: Nil is the same as Nil.::(2).::(4), the first form corresponding visually to the result (a list with first element 4 and second element 2).

  • Class body variables can be transparently implemented as separate getter and setter methods. For trait FooLike { var bar: Int }, an implementation may be object Foo extends FooLike { private var x = 0; def bar = x; def bar_=(value: Int) { x = value }} } }. The call site will still be able to use a concise foo.bar = 42.

  • The use of curly braces instead of parentheses is allowed in method calls. This allows pure library implementations of new control structures.[31] For example, breakable { ... if (...) break() ... } looks as if breakable was a language defined keyword, but really is just a method taking a thunk argument. Methods that take thunks or functions often place these in a second parameter list, allowing to mix parentheses and curly braces syntax: Vector.fill(4) { math.random } is the same as Vector.fill(4)(math.random). The curly braces variant allows the expression to span multiple lines.

  • For-expressions (explained further down) can accommodate any type that defines monadic methods such as map, flatMap and filter.

By themselves, these may seem like questionable choices, but collectively they serve the purpose of allowing domain-specific languages to be defined in Scala without needing to extend the compiler. For example, Erlang's special syntax for sending a message to an actor, i.e. actor ! message can be (and is) implemented in a Scala library without needing language extensions.