Strombolian eruption of Anak Krakatau on October 2018
Volcanic Eruptions
The most common type of volcanic eruption occurs when magma (the term for lava when it is below the Earth's surface) is released from a volcanic vent. Eruptions can be effusive, where lava flows like a thick, sticky liquid, or explosive, where fragmented lava explodes out of a vent. In explosive eruptions, the fragmented rock may be accompanied by ash and gases; in effusive eruptions, degassing is common but ash is usually not.
Volcanologists classify eruptions into several different types. Some are named for particular volcanoes where the type of eruption is common; others concern the resulting shape of the eruptive products or the place where the eruptions occur.
There are two predominant types of volcanic eruptions:
During a volcanic eruption, lava, tephra (ash, lapilli, volcanic bombs and blocks), and various gases are expelled from a volcanic vent or fissure. Several types of volcanic eruptions have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.
There are three different metatypes of eruptions. The most well-observed are magmatic eruptions, which involve the decompression of gas within magma that propels it forward. Phreatomagmatic eruptions are another type of volcanic eruption, driven by the compression of gas within magma, the direct opposite of the process powering magmatic activity. The last eruptive metatype is the phreatic eruption, which is driven by the superheating of steam via contact with magma; these eruptive types often exhibit no magmatic release, instead causing the granulation of existing rock.
Within these wide-defining eruptive types are several subtypes. The weakest are Hawaiian and submarine, then Strombolian, followed by Vulcanian and Surtseyan. The stronger eruptive types are Pelean eruptions, followed by Plinian eruptions; the strongest eruptions are called "Ultra Plinian." Subglacial and phreatic eruptions are defined by their eruptive mechanism, and vary in strength. An important measure of eruptive strength is Volcanic Explosivity Index (VEI), a magnitudic scale ranging from 0 to 8 that often correlates to eruptive types.
Eruption mechanisms
Volcanic eruptions arise through three main mechanisms:
There are two types of eruptions in terms of activity, explosive eruptions and effusive eruptions. Explosive eruptions are characterized by gas-driven explosions that propels magma and tephra Effusive eruptions, meanwhile, are characterized by the outpouring of lava without significant explosive eruption Effusive eruptions, meanwhile, are characterized by the outpouring of lava without significant explosive eruption. Effusive eruptions, meanwhile, are characterized by the outpouring of lava without significant explosive eruption.
Volcanic eruptions vary widely in strength. On the one extreme there are effusive Hawaiian eruptions, which are characterized by lava fountains and fluid lava flows, which are typically not very dangerous. On the other extreme, Plinian eruptions are large, violent, and highly dangerous explosive events. Volcanoes are not bound to one eruptive style, and frequently display many different types, both passive and explosive, even the span of a single eruptive cycle.Volcanoes do not always erupt vertically from a single crater near their peak, either. Some volcanoes exhibit lateral and fissure eruptions. Notably, many Hawaiian eruptions start from rift zones,and some of the strongest Surtseyan eruptions develop along fracture zones.and some of the strongest Surtseyan eruptions develop along fracture zones and some of the strongest Surtseyan eruptions develop along fracture zones.
Scientists believed that pulses of magma mixed together in the chamber before climbing upward—a process estimated to take several thousands of years. But Columbia University volcanologists found that the eruption of Costa Rica’s Irazú Volcano in 1963 was likely triggered by magma that took a nonstop route from the mantle over just a few months. Study authors called it the highway from hell.
Volcano explosivity index
The Volcanic Explosivity Index (commonly shortened VEI) is a scale, from 0 to 8, for measuring the strength of eruptions. It is used by the Smithsonian Institution's Global Volcanism Program in assessing the impact of historic and prehistoric lava flows. It operates in a way similar to the Richter scale for earthquakes, in that each interval in value represents a tenfold increasing in magnitude (it is logarithmic). The vast majority of volcanic eruptions are of VEIs between 0 and 2.
Magmatic eruptions
Diagram of a Hawaiian eruption. (key: 1. Ash plume 2. Lava fountain 3. Crater 4. Lava lake 5. Fumaroles 6. Lava flow 7. Layers of lava and ash 8. Stratum 9. Sill 10. Magma conduit 11. Magma chamber 12. Dike)
Hawaiian
Diagram of a Strombolian eruption. (key: 1. Ash plume 2. Lapilli 3. Volcanic ash rain 4. Lava fountain 5. Volcanic bomb 6. Lava flow 7. Layers of lava and ash 8. Stratum 9. Dike 10. Magma conduit 11. Magma chamber 12. Sill)
Strombolian
Diagram of a Vulcanian eruption. (key: 1. Ash plume 2. Lapilli 3. Lava fountain 4. Volcanic ash rain 5. Volcanic bomb 6. Lava flow 7. Layers of lava and ash 8. Stratum 9. Sill 10. Magma conduit 11. Magma chamber 12. Dike)
Vulcanian
Diagram of Peléan eruption. (key: 1. Ash plume 2. Volcanic ash rain 3. Lava dome 4. Volcanic bomb 5. Pyroclastic flow 6. Layers of lava and ash 7. Stratum 8. Magma conduit 9. Magma chamber 10. Dike)
Peléan
Volcanoes known to have Peléan activity include:
Diagram of a Plinian eruption. (key: 1. Ash plume 2. Magma conduit 3. Volcanic ash rain 4. Layers of lava and ash 5. Stratum 6. Magma chamber)
Plinian
Major Plinian eruptive events include:
Phreatomagmatic eruptions
Diagram of a Surtseyan eruption. (key: 1. Water vapor cloud 2. Compressed ash 3. Crater 4. Water 5. Layers of lava and ash 6. Stratum 7. Magma conduit 8. Magma chamber 9. Dike
Surtseyan
Diagram of a Submarine eruption. (key: 1. Water vapor cloud 2. Water 3. Stratum 4. Lava flow 5. Magma conduit 6. Magma chamber 7. Dike 8. Pillow lava)
Submarine
A diagram of a Subglacial eruption. (key: 1. Water vapor cloud 2. Crater lake 3. Ice 4. Layers of lava and ash 5. Stratum 6. Pillow lava 7. Magma conduit 8. Magma chamber 9. Dike)
Subglacial
Diagram of a phreatic eruption. (key: 1. Water vapor cloud 2. Magma conduit 3. Layers of lava and ash 4. Stratum 5. Water table 6. Explosion 7. Magma chamber)
Phreatic eruption
Source: wikipedia.org