Designed to kick the bass to the next level, the 4055 takes the traditional concept of a kick drum mic and turns it on its head - no more pre-tailored sound - now you can take sound design back into your own hands.




What makes the 4055 stand out from the competition is that it delivers the renowned DPA sound, clarity and linear frequency response, both on axis and off axis. Its low frequency response and dynamics are superb and result in a tight, natural, well-defined sound - the best low-end with detailed mids and highs.


The 4055 is one of the only kick drum mics that is not sonically pre-tailored to fit a traditional sound in a specific genre. Its performance allows a professional sound designer to create the exact sound s/he is listening for - regardless of the music genre. Want more attack? Slide the 4055 into the bass drum and point it directly at the beater. For a super-low-end sound, place the 4055 at the hole, just on the outside of the front head. Here, the level of sub and lows are represented the most.




Not only does the position inside or outside the kick drum give you different sounds but working with the angles of the microphone just outside the hole will deliver nuances of the drum sound. No matter what sound preference you have, the 4055 captures the true sound of a kick drum, whether it is used in classic, jazz, rock or any other genre.


The 4055 is placed in a large, robust housing and there is wind damping foam just in front of the capsule, behind the grille. A specially-designed shock mount also suspends the capsule inside the housing to avoid vibrations from the stage. The shock mount together with the extra wind damping ensures that the 4055 captures only the source.


The 4055 is easy to position, both inside and outside the drum. Its unique asymmetric design makes it quite easy to place the mic through the drum hole without ripping the front resonator skin.

The 4055 is not limited to the kick drum. It works equally well on other instruments, such as electric guitar cabinets, bass and horns. Its flat frequency response and ability to bring the uncolored sound to the next level works well on many instrument types.


Kick


Download File 🔥 https://geags.com/2y2Qx6 🔥



I travel a LOT and I like to travel light. I wanted a mid sized tech organizer but I also like to carry a shoulder bag while touring. The Sidekick is BOTH! Love the organization for a pretty comprehensive tech kit and it makes a great shoulder bag for my destination. Win win.

Another way of labeling kicks is by identifying the required mud weight increase necessary to control the well and kill a potential blowout. For example, if a kick required a 0.7-lbm/gal (84-kg/m3) mud weight increase to control the well, the kick could be termed a 0.7-lbm/gal (84-kg/m3) kick. It is interesting to note that an average kick requires approximately 0.5 lbm/gal (60 kg/m3), or less, mud weight increase.

Kicks occur as a result of formation pressure being greater than mud hydrostatic pressure, which causes fluids to flow from the formation into the wellbore. In almost all drilling operations, the operator attempts to maintain a hydrostatic pressure greater than formation pressure and, thus, prevent kicks; however, on occasion the formation will exceed the mud pressure and a kick will occur. Reasons for this imbalance explain the key causes of kicks:

Insufficient mud weight is the predominant cause of kicks. A permeable zone is drilled while using a mud weight that exerts less pressure than the formation pressure within the zone. Because the formation pressure exceeds the wellbore pressure, fluids begin to flow from the formation into the wellbore and the kick occurs.

These abnormal formation pressures are often associated with causes for kicks. Abnormal formation pressures are greater pressures than in normal conditions. In well control situations, formation pressures greater than normal are the biggest concern. Because a normal formation pressure is equal to a full column of native water, abnormally pressured formations exert more pressure than a full water column. If abnormally pressured formations are encountered while drilling with mud weights insufficient to control the zone, a potential kick situation has developed. Whether or not the kick occurs depends on the permeability and porosity of the rock. A number of abnormal pressure indicators can be used to estimate formation pressures so that kicks caused by insufficient mud weight are prevented (some are listed in Table 1).

An obvious solution to kicks caused by insufficient mud weights seems to be drilling with high mud weights; however, this is not always a viable solution. First, high mud weights may exceed the fracture mud weight of the formation and induce lost circulation. Second, mud weights in excess of the formation pressure may significantly reduce the penetration rates. Also, pipe sticking becomes a serious consideration when excessive mud weights are used. The best solution is to maintain a mud weight slightly greater than formation pressure until the mud weight begins to approach the fracture mud weight and, thus, requires an additional string of casing.

Improperly filling up of the hole during trips is another prominent cause of kicks. As the drillpipe is pulled out of the hole, the mud level falls because the pipe steel no longer displaces the mud. As the overall mud level decreases, the hole must be periodically filled up with mud to avoid reducing the hydrostatic pressure and, thereby, allowing a kick to occur.

Pulling the drillstring from the borehole creates swab pressures. Swab pressures are negative, and reduce the effective hydrostatic pressure throughout the hole and below the bit. If this pressure reduction lowers the effective hydrostatic pressure below the formation pressure, a potential kick has developed. Variables controlling swab pressures are:

Gas-contaminated mud will occasionally cause a kick, although this is rare. The mud density reduction is usually caused by fluids from the core volume being cut and released into the mud system. As the gas is circulated to the surface, it expands and may reduce the overall hydrostatic pressure sufficient enough to allow a kick to occur.

Occasionally, kicks are caused by lost circulation. A decreased hydrostatic pressure occurs from a shorter mud column. When a kick occurs from lost circulation, the problem may become severe. A large volume of kick fluid may enter the hole before the rising mud level is observed at the surface. It is recommended that the hole be filled with some type of fluid to monitor fluid levels if lost circulation occurs.

Warning signs and possible kick indicators can be observed at the surface. Each crew member has the responsibility to recognize and interpret these signs and take proper action. All signs do not positively identify a kick; some merely warn of potential kick situations. Key warning signs to watch for include the following:

An increase in flow rate leaving the well, while pumping at a constant rate, is a primary kick indicator. The increased flow rate is interpreted as the formation aiding the rig pumps by moving fluid up the annulus and forcing formation fluids into the wellbore.

If the pit volume is not changed as a result of surface-controlled actions, an increase indicates a kick is occurring. Fluids entering the wellbore displace an equal volume of mud at the flowline, resulting in pit gain.

When the rig pumps are not moving the mud, a continued flow from the well indicates a kick is in progress. An exception is when the mud in the drillpipe is considerably heavier than in the annulus, such as in the case of a slug.

A pump pressure change may indicate a kick. Initial fluid entry into the borehole may cause the mud to flocculate and temporarily increase the pump pressure. As the flow continues, the low-density influx will displace heavier drilling fluids, and the pump pressure may begin to decrease. As the fluid in the annulus becomes less dense, the mud in the drillpipe tends to fall and pump speed may increase.

When the drillstring is pulled out of the hole, the mud level should decrease by a volume equivalent to the removed steel. If the hole does not require the calculated volume of mud to bring the mud level back to the surface, it is assumed a kick fluid has entered the hole and partially filled the displacement volume of the drillstring. Even though gas or salt water may have entered the hole, the well may not flow until enough fluid has entered to reduce the hydrostatic pressure below the formation pressure.

Drilling fluid provides a buoyant effect to the drillstring and reduces the actual pipe weight supported by the derrick. Heavier muds have a greater buoyant force than less dense muds. When a kick occurs, and low-density formation fluids begin to enter the borehole, the buoyant force of the mud system is reduced, and the string weight observed at the surface begins to increase.

When the rate suddenly increases, it is assumed that the rock type has changed. It is also assumed that the new rock type has the potential to kick (as in the case of a sand), whereas the previously drilled rock did not have this potential (as in the case of shale). Although a drilling break may have been observed, it is not certain that a kick will occur, only that a new formation has been drilled that may have kick potential.

It is recommended when a drilling break is recorded that the driller should drill 3 to 5 ft (1 to 1.5 m) into the sand and then stop to check for flowing formation fluids. Flow checks are not always performed in tophole drilling or when drilling through a series of stringers in which repetitive breaks are encountered. Unfortunately, many kicks and blowouts have occurred because of this lack of flow checking.

An important point to remember about gas cutting is that, if the well did not kick within the time required to drill the gas zone and circulate the gas to the surface, only a small possibility exists that it will kick. Generally, gas cutting indicates that a formation has been drilled that contains gas. It does not mean that the mud weight must be increased. ff782bc1db

download oosa part 1

passport photo

download steam games free reddit

download new weather app

download vinesong holy spirit move me now