Full Publication List
Google Scholar: https://scholar.google.com/citations?user=lrUo4SkAAAAJ&hl=en
Web of Science: https://www.webofscience.com/wos/author/record/126867
Share Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Baral KC, Choi KY. Pharmaceutics. 2025; 17(4):397. (https://www.mdpi.com/1999-4923/17/4/397)
Multifunctional Sensors for Successive Detection of Endogenous ONOO- and Mitochondrial Viscosity: Discriminating Normal to Cancer Models. Shen J, Rajalakshmi K, Muthusamy S, Ahn DH, Song JW, Choi KY, Xi C, Dai J, Zhou Z, Kannan P, Nam YS, Zhu D. Anal Chem. 2024; 96(41):16289-16297 (https://pubs.acs.org/doi/10.1021/acs.analchem.4c03245)
Spontaneous detection of F- and viscosity using a multifunctional tetraphenylethene-lepidine probe: Exploring environmental applications. Food Chem. 2025; 466: 142147. (https://www.sciencedirect.com/science/article/pii/S030881462403797X?via%3Dihub)
Roseburia intestinalis-derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses. J Extracell Vesicles. 2024 ;13(8):e12487. (https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.12487)
Nanoengineered Polymeric RNA Nanoparticles for Controlled Biodistribution and Efficient Targeted Cancer Therapy. ACS Nano. 2024; 19;18: 7972.(https://pubs.acs.org/doi/10.1021/acsnano.3c10732)
Mucoadhesive chitosan microcapsules for controlled gastrointestinal delivery and oral bioavailability enhancement of low molecular weight peptides. J Control Release. 2024; 365: 422. (https://www.sciencedirect.com/science/article/pii/S0168365923006715?via%3Dihub)
Multifunctional Sensors for Successive Detection of Endogenous ONOO- and Mitochondrial Viscosity: Discriminating Normal to Cancer Models. Anal Chem. 2024; 96(41): 16289-16297. (https://pubs.acs.org/doi/10.1021/acs.analchem.4c03245)
In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis. J Microbiol Biotechnol. 2024; 34(4): 940-948. (https://www.jmb.or.kr/journal/view.html?doi=10.4014/jmb.2312.12002)
Codium fragile extract prevents atopic dermatitis in DNCB-induced mice. Food Sci Biotechnol. 2024; 33(11): 2643-2652. (https://link.springer.com/article/10.1007/s10068-024-01523-1)
Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioactive Materials. 2023; 22: 365. (https://www.sciencedirect.com/science/article/pii/S2452199X22004297?via%3Dihub)
Crystallinity-tuned ultrasoft polymeric DNA networks for controlled release of anticancer drugs. J Control Release. 2023; 355: 7. (https://www.sciencedirect.com/science/article/pii/S0168365923000652?via%3Dihub)
Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract. Food Chem. 2023; 403: 134348. (https://www.sciencedirect.com/science/article/pii/S030881462202310X?via%3Dihub)
Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials. 2022; 14: 182. (https://www.sciencedirect.com/science/article/pii/S2452199X21005594?via%3Dihub)
Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. Phytomedicine. 2022; 103: 154209. (https://www.sciencedirect.com/science/article/pii/S0944711322002872)
Surface-Functionalized Polymeric siRNA Nanoparticles for Tunable Targeting and Intracellular Delivery to Hematologic Cancer Cells. Biomacromolecules. 2022; 23: 2255-63. (https://pubs.acs.org/doi/abs/10.1021/acs.biomac.1c01497)
Discovery and Photoisomerization of New Pyrrolosesquiterpenoids Glaciapyrroles D and E, from Deep-Sea Sediment Streptomyces sp. Marine Drugs. 2022. 20 (5), 281. (https://www.mdpi.com/1660-3397/20/5/281)
Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines. 2021; 9: 305. (https://www.mdpi.com/2227-9059/9/3/305)
2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates. Journal of Industrial and Engineering Chemistry. 2021; 95, 66-72. (https://www.sciencedirect.com/science/article/pii/S1226086X20305402)
Dual-targeting RNA nanoparticles for efficient delivery of polymeric siRNA to cancer cells. Chem Commun (Camb). 2020; 56: 6624-7. (https://pubs.rsc.org/en/content/articlelanding/2020/cc/d0cc01848a#!divAbstract)
Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J Control Release. 2020. (https://www.sciencedirect.com/science/article/pii/S0168365920300614)
Hyaluronic Acid-Based Activatable Nanomaterials for Stimuli-Responsive Imaging and Therapeutics: beyond CD44-Mediated Drug Delivery. Adv Mater. 2019; 31: 1803549. (https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201803549)
Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo using Layer-by-Layer Nanoparticles. Adv Funct Mater. 2019; 29: 1900018. (https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201900018)
Size-controlled synthesis of polymerized DNA nanoparticles for targeted anticancer drug delivery. Chem Commun (Camb). 2019; 55, 4905-8. (https://pubs.rsc.org/en/content/articlehtml/2019/cc/c9cc01442j)
Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2. Environmental Science and Pollution Research. 2019; 26: 32255-65. (https://link.springer.com/article/10.1007/s11356-019-06306-4)
Intracellularly Activatable Nanovasodilators to Enhance Passive Cancer Targeting Regime. Nano Lett. 2018; 18: 2637-44. (https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b00495)
Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials. 2017; 131: 15-26. (https://www.sciencedirect.com/science/article/pii/S0142961217302016)
Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation. ACS Nano. 2016; 10: 10858-10868. (https://pubs.acs.org/doi/abs/10.1021/acsnano.6b05113)
Long-Circulating Au-TiO2 Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer. Nano Lett. 2016; 16: 6257-64. (https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02547)
Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano. 2016; 10: 4441-4450 (https://pubs.acs.org/doi/abs/10.1021/acsnano.6b00087)
Bioreducible Core-Crosslinked Hyaluronic Acid Micelle for Targeted Cancer Therapy. J Control Release. 2015; 200: 158-66. (https://www.sciencedirect.com/science/article/pii/S0168365914008293)
Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles. Adv Funct Mater. 2015; 26: 991-1003 (https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201504385)
Tumor-Targeted Synergistic Blockade of MAPK and PI3K From a Layer-by-Layer Nanoparticle. Clin Cancer Res. 2015; 21: 4410-19 (https://clincancerres.aacrjournals.org/content/21/19/4410.short)
Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials. 2015; 53: 341-8. (https://www.sciencedirect.com/science/article/pii/S0142961215002197)
Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules. 2015; 16: 447-56. (https://pubs.acs.org/doi/abs/10.1021/bm5017755)
Inhibition of Notch signalling ameliorates experimental inflammatory arthritis. Ann Rheum Dis. 2015; 74: 267-74. (https://ard.bmj.com/content/74/1/267.short)
A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nat Protoc. 2014; 9: 1900-15. (https://www.nature.com/articles/nprot.2014.128)
Versatile RNA-Interference Nanoplatform for Systemic Delivery of RNAs. ACS Nano. 2014; 8: 4559-70. (https://pubs.acs.org/doi/abs/10.1021/nn500085k)
Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing. ACS Nano. 2014; 8: 4403-14. (https://pubs.acs.org/doi/abs/10.1021/nn4062726)
The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials. 2014; 35: 856-65. (https://www.sciencedirect.com/science/article/pii/S014296121301257X)
Bioreducible Carboxymethyl Dextran Nanoparticles for Tumor-Targeted Drug Delivery. Adv Healthc Mater. 2014; 3: 1829-38. (IF: 6.270) (https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.201300691)
Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano. 2013; 7: 5684-93. (https://pubs.acs.org/doi/abs/10.1021/nn401911k)
Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials. 2013; 34: 1772-80. (https://www.sciencedirect.com/science/article/pii/S0142961212012914)
Photo-crosslinked hyaluronic acid nanoparticles with improved stability for in vivo tumor-targeted drug delivery. Biomaterials. 2013; 34: 5273-80. (https://www.sciencedirect.com/science/article/pii/S0142961213003608)
Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chem Commun (Camb). 2013; 49: 10349-51. (https://pubs.rsc.org/en/content/articlehtml/2013/cc/c3cc44260h)
Bibliometric analysis of theranostics: two years in the making. Theranostics. 2013; 3: 527-31. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706696/)
A Facile, One-Step Nanocarbon Functionalization for Biomedical Applications. Nano Lett. 2012; 12: 3613-20. (https://pubs.acs.org/doi/abs/10.1021/nl301309g)
Sticky Nanoparticles: A New Platform for siRNA Delivery by Bis(Zinc(II)-Dipicolyamine)-Functionalized, Self-Assembled Nanoconjugate. Angew Chem Int Ed Engl. 2012; 51: 445-9. (https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201105565)
Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012; 33: 6186-93. (https://www.sciencedirect.com/science/article/pii/S0142961212005583)
Protease-Activated Drug Development. Theranostics. 2012; 2: 156-78. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296471/)
Theranostic Nanoplatforms for Simultaneous Cancer Imaging and Therapy: Current Approaches and Future Perspectives. Nanoscale. 2012; 4: 330-42. (https://pubs.rsc.org/en/content/articlehtml/2012/nr/c1nr11277e)
Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer. Colloid Surface B. 2012; 99: 82-94. (https://www.sciencedirect.com/science/article/pii/S0927776511006138)
Multiplex Imaging of an Intracellular Proteolytic Cascade by Using a Broad-Spectrum Nanoquencher. Angew Chem Int Ed Engl. 2012; 51: 1625-30. (https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201107795)
Tumor-Targeting Hyaluronic Acid Nanoparticles for Photodynamic Imaging and Therapy. Biomaterials. 2012; 33: 3980-9. (https://www.sciencedirect.com/science/article/pii/S0142961212001822)
Real-Time Monitoring of Caspase Cascade Activation in Living Cells. J Control Release. 2012; 163: 55-62. (https://www.sciencedirect.com/science/article/pii/S0168365912004579)
Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. J Control Release. 2012; 157:493-9. (https://www.sciencedirect.com/science/article/pii/S0168365911008558)
Amphiphilic Hyaluronic Acid-Based Nanoparticles for Tumor-Specific Optical/Mr Dual Imaging. J Mater Chem. 2012; 22: 10444-7. (https://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm31406a)
Site-specific PEGylated Exendin-4 modified with a high molecular weight trimeric PEG reduces steric hindrance and increases type 2 antidiabetic therapeutic effects. Bioconjug Chem. 2012; 23: 2214-20. (https://pubs.acs.org/doi/abs/10.1021/bc300265n)
Smart Nanocarrier Based on PEGylated Hyaluronic Acid Nanoparticles for Cancer Therapy. ACS Nano. 2011;5:8591-9. (https://pubs.acs.org/doi/abs/10.1021/nn202070n)
Real time, high resolution video imaging of apoptosis in singly cells with a polymeric nanoprobe, Bioconjugate Chem. 2011;22:125-31. (https://pubs.acs.org/doi/abs/10.1021/bc1004119)
PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo, Biomaterials. 2011;32:1880-9. (https://www.sciencedirect.com/science/article/pii/S0142961210014328)
Manipulating the Power of an Additional Phase: A Flower-like Au-Fe(3)O(4) Optical Nanosensor for Imaging Protease Expressions In vivo, ACS Nano. 2011;5:3043-51. (https://pubs.acs.org/doi/abs/10.1021/nn200161v)
Self-assembled hyaluronic acid nanoparticles for active tumor targeting, Biomaterials. 2010;31:106-14. (https://www.sciencedirect.com/science/article/pii/S0142961209009600)
Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis, Biomaterials. 2010;31:9057-64. (https://www.sciencedirect.com/science/article/pii/S0142961210010215)
Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel, Int J Pharm. 2010;394:154-61. (https://www.sciencedirect.com/science/article/pii/S0378517310003133)
Self-assembled hyaluronic acid nanoparticles as potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem. 2009;19:4102-7. (https://pubs.rsc.org/en/content/articlehtml/2009/jm/b900456d)
Preparation and characterization of hyaluonic acid-based hydrogel nanoparticles, J Phys Chem Solids. 2008;69:1591-5. (https://www.sciencedirect.com/science/article/pii/S0022369707006397)
Patents (Korean Patent)
Drug carrier for photothermal and photodynamic therapy based on nanoassebly comprising gold nanocluster and fabrication method of the drug carrier, 101074026 (Dec 05, 2018).
A contrast medium comprising amphiphilic hyaluronic acid-based nanoparticles binded a near-infrared fluorochrome for diagnosing tumor, 101074026 (Oct 10, 2011).
Pegylated amphiphilic polymeric nanoparticles and uses thereof, 101127402 (March 9, 2012).