SOPHIA computes the relative cost and benefit of each reconfiguration step, and determines an optimal reconfiguration for a future time window. This plan specifies when to change configurations and to what, to achieve the best performance without degrading data availability. We demonstrate its effectiveness for three different workloads: a multi-tenant, global-scale metagenomics repository (MG-RAST), a bus-tracking application (Tiramisu), and an HPC data-analytics system, all with varying levels of workload complexity and demonstrating dynamic workload changes.
SOPHIA outperforms in throughput and tail-latency various baselines for two popular NoSQL databases, Cassandra and Redis.