Publications (Google Scholar)
2025
55. Molecular dynamics simulation of the transport and structural properties for methanol-octane blends at engine-relevant conditions ; R Kashyap, K Saha, KA Subramanian. (2025). International Journal of Green Energy, 1-25. (link)
54. Molecular Dynamics Modelling on Effects of Fuel Injection Pressure on Bulk Modulus in a Constant Volume Chamber with Methanol blended Gasoline Fuels ; R Kashyap, K Saha, KA Subramanian. (2025). International Journal of Energy for a Clean Environment. (link)
53. Numerical modeling of flash boiling sprays using iso-octane, ethanol, and methanol as fuels for GDI applications ; A Ailaboina, K Saha . (2025). Thermal Science and Engineering Progress 61, 103557. (link)
52. Microscopic and macroscopic analysis of the flashing and non-flashing ethanol blended fuel for the direct injection sprays ; A Gaur, A Ailaboina, K Saha. (2025). (link)
2024
51. Experimental analysis of the near-nozzle direct injection spray for gasoline and ethanol-gasoline blended fuels ; A Gaur, K Saha, DP Ghai. (2024). Experimental Thermal and Fluid Science 153, 111142. (link)
50. Experimental characterization of early, quasi-steady and post-injection evolution of single-hole direct injection sprays for spark-ignited engines ; A Gaur, K Saha, DP Ghai. (2024). Thermal Science and Engineering Progress 47, 102270. (link)
2023
49. Prediction of Transport Properties of Methanol-Octane Blends at Different Temperatures and Pressures Using Molecular Dynamics Simulation ; R Kashyap, K Saha, KA Subramanian. (2023). International Green Energy Conference, 299-314. (link).
48. The Estimation of Latent Heat and Vapor Pressure of Ethanol–Gasoline Blends Using Machine Learning and Thermodynamic Relations ; M Bansal, R Kashyap, K Saha. (2023). International Green Energy Conference, 391-407. (link)
47. The Estimation of Latent Heat and Vapor Pressure of Ethanol–Gasoline Blends Using Machine Learning and Thermodynamic Relations ; M Bansal, R Kashyap, K Saha. (2023). International Green Energy Conference, 391-407. (link)
46. Theoretical Analysis of Plasma Gasification for Waste Treatment in India ; K Saha, R Narayanan, P Mathur, UN Rashmika. (2023). International Green Energy Conference, 375-390. (link)
45. Numerical Analysis of Two-Phase Flow Using 2-D Axi-Symmetric Approach for an Effervescent Atomizer ; MV Koti, K Saha. (2023). International Green Energy Conference, 245-255. (link)
44. CFD Analysis of Combustion of Gasoline, Hydrogen, CNG and HCNG Blends in Internal Combustion Engine; S Sahu, S Srivastava, A Ailaboina, K Agrawal, K Saha. (2023). International Green Energy Conference, 283-298. (link)
43. Numerical simulation and analysis of fluid-structure interaction on 3D MHKF-180 and NACA4418 cavitating hydrofoils; S Singh, M Danish, K Saha, BN Singh. (2023). Ocean Engineering 272, 113867. (link)
2022
42. Diffused Back Illumination (DBI) Experimental Technique on Non-Flash Boiling and Flash Boiling Sprays Using a Single-hole Gasoline Direct Injection (GDI) System; Anurag Gaur and Kaushik Saha. (2022). ILASS-Asia 22nd Annual Conference on Liquid Atomization and Spray Systems, IIT Indore, M.P., India. (link)
41. Experimental Investigation of Gasoline Direct Injection (GDI) Sprays Using Diffused Back Illumination (DBI) and Structured Laser Illumination Planar Imaging (SLIPI) Techniques; Gaur, A., Ailaboina, A., Saha, K. Proceedings series of Internal Combustion Engine Division Fall Technical Conference, Indianapolis, USA. (link)
40. Phenomenological model development of flash boiling spray for multi-hole gasoline direct injection (GDI) systems; Ailaboina, A. and Saha, K. (2022). Proceedings series of Internal Combustion Engine Division Fall Technical Conference, Indianapolis, USA. (link)
39. Numerical analysis of the effect of the chamber height and wall temperature on the spray wall interaction for the GDI system; Dolui, S., Ailaboina, A., Saha, K. (2022). Proceedings of the 14th International Green Energy Conference, Glasgow, UK. (link)
38. On Modeling of Spray G ECN Using ROI-Based Eulerian-Lagrangian Simulation; Ailaboina, A. and Saha, K. (2022). Frontiers in Mechanical Engineering 8 (Advances in Fuel Injection Systems) , 56. (link)
37. Modeling the spray characteristics of blended fuels for gasoline direct injection applications; Ailaboina, A. and Saha, K. (2022). International Journal of Green Energy. 1-16. (link)
2021
36. Numerical study of combustion and emission performance on a multi-holed gasoline direct injection engine with and without flash boiling spray; Ailaboina, A. and Saha, K. (2021). Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, IIT Madras, Chennai, Tamil Nadu, India. (link)
35. Numerical analysis of spray formation for GDI system using dynamically coupled internal nozzle flow and ELSA spray simulation; Arun R S and Kaushik Saha, (2021). Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, IIT Madras, Chennai, Tamil Nadu, India. (link)
34. Modeling the spray characteristics of blended fuels for gasoline direct injection applications; Ailaboina, A. and Saha, K. (2021). Proceedings of the 13th International Green Energy Conference, Tianjin, China. (link)
33. Numerical simulation of unsteady cavitating flow around 2-D MHKF-180 and NACA4418 hydrofoils; Singh, Srijna, Mohammad Danish, and Kaushik Saha. (2021). Journal of Ocean Engineering and Marine Energy. 7.3, 243-259. (link)
2020
32. Development and validation of the cavitation-induced erosion risk assessment tool; Magnotti, G. M., Battistoni, M., Saha, K., & Som, S. (2020).Transportation Engineering, 2, 100034. (link)
31. Effect of ambient pressure on the behavior of single-component fuels in a gasoline multi-hole injector; Nocivelli, L., Yan, J., Saha, K., Magnotti, G. M., Lee, C. F., & Som, S. (2019, October). In Internal Combustion Engine Division Fall Technical Conference (Vol. 59346, p. V001T02A012). American Society of Mechanical Engineers. (link)
2019
30. Influence of turbulence and thermophysical fluid properties on cavitation erosion predictions in channel flow geometries; Magnotti, G. M., Battistoni, M., Saha, K., & Som, S. (2019). SAE International Journal of Advances and Current Practices in Mobility, 1(2019-01-0290), 691-705. (link)
29. Modeling of Cavitation in Fuel Injectors with Single-and Two-Fluid Approaches; Saha, K., Battistoni, M., Som, S., & Li, X. (2019). In Two-Phase Flow for Automotive and Power Generation Sectors (pp. 185-201). Springer, Singapore. (link)
28. Two-Phase Flow for Automotive and Power Generation Sectors; Saha, K., Agarwal, A. K., Ghosh, K., & Som, S. (Eds.). (2019). Springer. (link)
27. Introduction: Two-Phase Flow for Automotive and Power Generation Sectors; Saha, K., Agarwal, A. K., Ghosh, K., & Som, S. (2019). In Two-Phase Flow for Automotive and Power Generation Sectors (pp. 1-5). Springer, Singapore. (link)
2018
26. Predicting Cavitation Erosion Propensity and Severity in Fuel Injection Systems; Magnotti, G., Battistoni, M., Saha, K., & Som, S. (2018). Bulletin of the American Physical Society, 63. (link)
25. Exploration of cavitation-induced erosion metrics in throttle flow simulations; Magnotti, G. M., Battistoni, M., Saha, K., & Som, S. (2018). arXiv preprint arXiv:1810.03283. (link)
24. Evaluation of a new cavitation erosion metric based on fluid-solid energy transfer in channel flow simulations; Magnotti, G. M., Battistoni, M., Saha, K., & Som, S. (2018). arXiv preprint arXiv:1810.03287. (link)
23. Modeling the dynamic coupling of internal nozzle flow and spray formation for gasoline direct injection applications (No. 2018-01-0314)' Saha, K., Srivastava, P., Quan, S., Senecal, P. K., Pomraning, E., & Som, S. (2018). SAE Technical Paper. (link)
22. Introduction: Two-Phase Flow for Automotive and Power Generation; Saha, K., Agarwal, A. K., Ghosh, K., & Som, S. (2018).Two-Phase Flow for Automotive and Power Generation Sectors.(link)
21. Modeling of flash boiling phenomenon in internal and near-nozzle flow of fuel injectors; Saha, K., Battistoni, M., & Som, S. (2018). In Droplets and sprays (pp. 167-181). Springer, Singapore. (link)
2017
20. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model; He, Z., Zhang, L., Saha, K., Som, S., Duan, L., & Wang, Q. (2017).International Communications in Heat and Mass Transfer, 89, 98-107. (link)
19. Numerical simulation of a direct-acting piezoelectric prototype injector nozzle flow for partial needle lifts (No. 2017-24-0101); Marti-Aldaravi, P., Saha, K., Gimeno, J., & Som, S. (2017).SAE Technical Paper. (link)
18. A comparison of experimental and modeled velocity in gasoline direct-injection sprays with plume interaction and collapse; Sphicas, Panos, Lyle M. Pickett, Scott Skeen, Jonathan Frank, Tommaso Lucchini, David Sinoir, Gianluca D’Errico, Kaushik Saha, and Sibendu Som.SAE International Journal of Fuels and Lubricants 10, no. 1 (2017): 184-201. (link)
17. Coupled Eulerian internal nozzle flow and Lagrangian spray simulations for GDI systems (No. 2017-01-0834); Saha, K., Quan, S., Battistoni, M., Som, S., Senecal, P. K., & Pomraning, E. (2017).SAE Technical Paper. (link)
16. Investigation of homogeneous relaxation model parameters and their implications for gasoline injectors; Saha, K., Som, S., & Battistoni, M. (2017). Atomization and Sprays, 27(4). (link)
2016
15. Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen (No. 2016-01-8082); Saha, K., Moiz, A. A., Ramirez, A., Som, S., Biruduganti, M., Bima, M., & Powell, P. (2016). SAE Technical Paper. (link)
14. Modeling of internal and near-nozzle flow for a gasoline direct injection fuel injector; Saha, K., Som, S., Battistoni, M., Li, Y., Quan, S., & Kelly Senecal, P. (2016). Journal of Energy Resources Technology, 138(5). (link)
13. Numerical investigation of two-phase flow evolution of in-and near-nozzle regions of a gasoline direct injection engine during needle transients; Saha, K., Som, S., Battistoni, M., Li, Y., Pomraning, E., & Senecal, P. K. (2016).SAE International Journal of Engines, 9(2), 1230-1240. (link)
12. Assessment of cavitation models for flows in diesel injectors with single-and two-fluid approaches; Saha, K., & Li, X. (2016). Journal of Engineering for Gas Turbines and Power, 138(1). (link)
2015
11. Modeling of internal and near-nozzle flow for a GDI fuel injector; Saha, K., Som, S., Battistoni, M., Li, Y., Quan, S., & Senecal, P. K. (2015, November). In Internal Combustion Engine Division Fall Technical Conference (Vol. 57281, p. V002T06A015). American Society of Mechanical Engineers. (link)
10. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector; Saha, K., Som, S., Battistoni, M., Li, Y., Quan, S., & Senecal, P. K. (2015, November).In Journal of Physics: Conference Series (Vol. 656, No. 1, p. 012100). IOP Publishing. (link)
2014
9. Assessment of different cavitation models in mixture and Eulerian framework for two-phase flow in Diesel injectors. Saha, K., & Li, X. In Internal Combustion Engine Division Fall Technical Conference (Vol. 56109, p. V002T02A011). American Society of Mechanical Engineers. (link)
2013
8. Modified single-fluid cavitation model for pure diesel and biodiesel fuels in direct injection fuel injectors; Saha, K., Abu-Ramadan, E., & Li, X. (2013). Journal of engineering for gas turbines and power, 135(6). (link)
2012
7. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment; Saha, K., Abu-Ramadan, E., & Li, X. (2012). Applied Energy, 93, 71-79. (link)
6. Numerical modeling of the impingement process of urea-water solution spray on the heated walls of SCR systems (No. 2012-01-1301). Abu-Ramadan, E., Saha, K., & Li, X. (2012). SAE Technical Paper. (link)
5. Modeling of precipitate formation in solution precursor droplets in a microwave plasma; Saha, K., & Cetegen, B. M. (2012). Journal of thermal spray technology, 21(2), 211-225. (link)
2011
4. Modeling the depleting mechanism of urea‐water‐solution droplet for automotive selective catalytic reduction systems; Abu‐Ramadan, E., Saha, K., & Li, X. (2011). AIChE Journal, 57(11), 3210-3225. (link)
3. Modeling of the injection and decomposition processes of urea-water-solution spray in automotive SCR systems (No. 2011-01-1317); Abu-Ramadan, E., Saha, K., & Li, X. (2011). SAE Technical Paper. (link)
2. Modeling of ceramic particle heating and melting in a microwave plasma; Saha, K., Chaudhuri, S., & Cetegen, B. M. (2011). Journal of heat transfer, 133(3). (link)
2009
1. Modeling of Thermophysical Processes of Ceramic Particles and Solution Precursor Droplets in a Microwave Excited Plasma; Saha, K. (2009).