Preprints
Kathrin Hellmuth, Qin Li, Stephen J. Wright, Ruhui Jin
Data selection: at the interface of PDE-based inverse problem and randomized linear algebra
submitted (2025)Kathrin Hellmuth, Christian Klingenberg, Qin Li
Preserving positivity of Gauss-Newton Hessian through random sampling
submitted (2025)
Publications
Herbert Egger, Kathrin Hellmuth, Nora Philippi, Matthias Schlottbom
A kinetic chemotaxis model and its diffusion limit in slab geometry
Asymptotic Analysis (2025)Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
Reconstructing the kinetic chemotaxis kernel using macroscopic data: Well-posedness and ill-posedness
SIAM Journal on Applied Mathematics, vol. 85, no. 2, pp. 613-635 (2025)Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
Kinetic chemotaxis tumbling kernel determined from macroscopic quantities
SIAM Journal on Mathematical Analysis, vol. 56, no. 1, pp. 568-587 (2024)Kathrin Hellmuth, Christian Klingenberg
Computing Black Scholes with Uncertain Volatility—A Machine Learning Approach
Mathematics, vol. 10, no. 3, 489, special issue "Numerical Analysis with Applications in Machine Learning" (2022)Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
Multiscale convergence of the inverse problem for chemotaxis in the Bayesian setting
Computation, vol. 9, no. 11, 119, special issue "Inverse Problems with Partial Data” (2021)
Conference proceedings:
Kathrin Hellmuth, Christian Klingenberg, Qin Li
Multi-scale PDE inverse problem in bacterial movement
Hyperbolic Problems: Theory, Numerics, Applications. Volume II. HYP 2022.
SEMA SIMAI Springer Series, vol 35, pp.395-405 (2024)Kathrin Hellmuth
Inverse problems for kinetic equations - an application to chemotaxis
Oberwolfach Reports. Rep. 18, no. 3, pp. 2316–2318 (2021)Kathrin Hellmuth
An inverse problem for chemotaxis
Oberwolfach Reports. Rep. 18, no. 2, pp. 1080–1083 (2021)
Science communication:
Kathrin Hellmuth, Christian Klingenberg
Route planning for bacteria
Snapshots of modern mathematics from Oberwolfach (2022), no.12
Thesis:
Kathrin Hellmuth (supervised by Christian Klingenberg)
On Qualitative Experimental Design for PDE Parameter Identification Inverse Problems
(2025)