Preprints
- Kathrin Hellmuth, Qin Li, Stephen J. Wright, Ruhui Jin 
 Data selection: at the interface of PDE-based inverse problem and randomized linear algebra
 submitted (2025)
- Kathrin Hellmuth, Christian Klingenberg, Qin Li 
 Preserving positivity of Gauss-Newton Hessian through random sampling
 submitted (2025)
Publications
- Herbert Egger, Kathrin Hellmuth, Nora Philippi, Matthias Schlottbom 
 A kinetic chemotaxis model and its diffusion limit in slab geometry
 Asymptotic Analysis (2025)
- Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang 
 Reconstructing the kinetic chemotaxis kernel using macroscopic data: Well-posedness and ill-posedness
 SIAM Journal on Applied Mathematics, vol. 85, no. 2, pp. 613-635 (2025)
- Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang 
 Kinetic chemotaxis tumbling kernel determined from macroscopic quantities
 SIAM Journal on Mathematical Analysis, vol. 56, no. 1, pp. 568-587 (2024)
- Kathrin Hellmuth, Christian Klingenberg 
 Computing Black Scholes with Uncertain Volatility—A Machine Learning Approach
 Mathematics, vol. 10, no. 3, 489, special issue "Numerical Analysis with Applications in Machine Learning" (2022)
- Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang 
 Multiscale convergence of the inverse problem for chemotaxis in the Bayesian setting
 Computation, vol. 9, no. 11, 119, special issue "Inverse Problems with Partial Data” (2021)
 
Conference proceedings:
- Kathrin Hellmuth, Christian Klingenberg, Qin Li 
 Multi-scale PDE inverse problem in bacterial movement
 Hyperbolic Problems: Theory, Numerics, Applications. Volume II. HYP 2022.
 SEMA SIMAI Springer Series, vol 35, pp.395-405 (2024)
- Kathrin Hellmuth 
 Inverse problems for kinetic equations - an application to chemotaxis
 Oberwolfach Reports. Rep. 18, no. 3, pp. 2316–2318 (2021)
- Kathrin Hellmuth 
 An inverse problem for chemotaxis
 Oberwolfach Reports. Rep. 18, no. 2, pp. 1080–1083 (2021)
Science communication:
- Kathrin Hellmuth, Christian Klingenberg 
 Route planning for bacteria
 Snapshots of modern mathematics from Oberwolfach (2022), no.12
Thesis:
- Kathrin Hellmuth (supervised by Christian Klingenberg) 
 On Qualitative Experimental Design for PDE Parameter Identification Inverse Problems
 (2025)