The Julian calendar is a solar calendar of 365 days in every year with an additional leap day every fourth year (without exception). The Julian calendar is still used as a religious calendar in parts of the Eastern Orthodox Church and in parts of Oriental Orthodoxy as well as by the Amazigh people (also known as the Berbers).[1]

The Julian calendar was proposed in 46 BC by (and takes its name from) Julius Caesar, as a reform of the earlier Roman calendar, which was largely a lunisolar one.[2] It took effect on 1 January 45 BC, by his edict. Caesar's calendar became the predominant calendar in the Roman Empire and subsequently most of the Western world for more than 1,600 years, until 1582 when Pope Gregory XIII promulgated a revised calendar.


Julian Calendar 2022 Pdf Download


Download Zip 🔥 https://byltly.com/2y7ZFM 🔥



The Julian calendar has two types of years: a normal year of 365 days and a leap year of 366 days. They follow a simple cycle of three normal years and one leap year, giving an average year that is 365.25 days long. That is more than the actual solar year value of approximately 365.2422 days (the current value, which varies), which means the Julian calendar gains one day every 129 years. In other words, the Julian calendar gains 3.1 days every 400 years.

Gregory's calendar reform modified the Julian rule, to reduce the average length of the calendar year from 365.25 days to 365.2425 days and thus corrected the Julian calendar's drift against the solar year: the Gregorian calendar gains just 0.1 day over 400 years. For any given event during the years from 1901 through 2099, its date according to the Julian calendar is 13 days behind its corresponding Gregorian date (for instance Julian 1 January falls on Gregorian 14 January). Most Catholic countries adopted the new calendar immediately; Protestant countries did so slowly in the course of the following two centuries or so; most Orthodox countries retain the Julian calendar for religious purposes but adopted the Gregorian as their civil calendar in the early part of the twentieth century.

The ordinary year in the previous Roman calendar consisted of 12 months, for a total of 355 days. In addition, a 27- or 28-day intercalary month, the Mensis Intercalaris, was sometimes inserted between February and March. This intercalary month was formed by inserting 22 or 23 days after the first 23 days of February; the last five days of February, which counted down toward the start of March, became the last five days of Intercalaris. The net effect was to add 22 or 23 days to the year, forming an intercalary year of 377 or 378 days.[5] Some say the mensis intercalaris always had 27 days and began on either the first or the second day after the Terminalia (23 February).[6]

If managed correctly this system could have allowed the Roman year to stay roughly aligned to a tropical year. However, since the pontifices were often politicians, and because a Roman magistrate's term of office corresponded with a calendar year, this power was prone to abuse: a pontifex could lengthen a year in which he or one of his political allies was in office, or refuse to lengthen one in which his opponents were in power.[7]

Caesar's reform was intended to solve this problem permanently, by creating a calendar that remained aligned to the sun without any human intervention. This proved useful very soon after the new calendar came into effect. Varro used it in 37 BC to fix calendar dates for the start of the four seasons, which would have been impossible only 8 years earlier.[8] A century later, when Pliny dated the winter solstice to 25 December because the sun entered the 8th degree of Capricorn on that date,[9] this stability had become an ordinary fact of life.

The octaeteris, a cycle of eight lunar years popularised by Cleostratus (and also commonly attributed to Eudoxus) which was used in some early Greek calendars, notably in Athens, is 1.53 days longer than eight mean Julian years. The length of nineteen years in the cycle of Meton was 6,940 days, six hours longer than the mean Julian year. The mean Julian year was the basis of the 76-year cycle devised by Callippus (a student under Eudoxus) to improve the Metonic cycle.

In Persia (Iran) after the reform in the Persian calendar by introduction of the Persian Zoroastrian (i. e. Young Avestan) calendar in 503 BC and afterwards, the first day of the year (1 Farvardin=Nowruz) slipped against the vernal equinox at the rate of approximately one day every four years.[11][12]

Likewise in the Egyptian calendar, a fixed year of 365 days was in use, drifting by one day against the sun in four years. An unsuccessful attempt to add an extra day every fourth year was made in 238 BC (Decree of Canopus). Caesar probably experienced this "wandering" or "vague" calendar in that country. He landed in the Nile delta in October 48 BC and soon became embroiled in the Ptolemaic dynastic war, especially after Cleopatra managed to be "introduced" to him in Alexandria.

Caesar's reform only applied to the Roman calendar. However, in the following decades many of the local civic and provincial calendars of the empire and neighbouring client kingdoms were aligned to the Julian calendar by transforming them into calendars with years of 365 days with an extra day intercalated every four years.[20][21] The reformed calendars typically retained many features of the unreformed calendars. In many cases, the New Year was not on 1 January, the leap day was not on the traditional bissextile day, the old month names were retained, the lengths of the reformed months did not match the lengths of Julian months, and, even if they did, their first days did not match the first day of the corresponding Julian month. Nevertheless, since the reformed calendars had fixed relationships to each other and to the Julian calendar, the process of converting dates between them became quite straightforward, through the use of conversion tables known as "hemerologia".[22]

The Asian calendar was an adaptation of the Ancient Macedonian calendar used in the Roman province of Asia and, with minor variations, in nearby cities and provinces. It is known in detail through the survival of decrees promulgating it issued in 8 BC by the proconsul Paullus Fabius Maximus. It renamed the first month Dios as Kaisar, and arranged the months such that each month started on the ninth day before the kalends of the corresponding Roman month; thus the year began on 23 September, Augustus's birthday.

The first step of the reform was to realign the start of the calendar year (1 January) to the tropical year by making 46 BC 445 days long, compensating for the intercalations which had been missed during Caesar's pontificate. This year had already been extended from 355 to 378 days by the insertion of a regular intercalary month in February. When Caesar decreed the reform, probably shortly after his return from the African campaign in late Quintilis (July), he added 67 more days by inserting two extraordinary intercalary months between November and December.[note 1]

Because 46 BC was the last of a series of irregular years, this extra-long year was, and is, referred to as the "last year of confusion". The new calendar began operation after the realignment had been completed, in 45 BC.[24]

The Julian months were formed by adding ten days to a regular pre-Julian Roman year of 355 days, creating a regular Julian year of 365 days. Two extra days were added to January, Sextilis (August) and December, and one extra day was added to April, June, September, and November. February was not changed in ordinary years, and so continued to be the traditional 28 days. Thus, the ordinary (i.e., non-leap year) lengths of all of the months were set by the Julian calendar to the same values they still hold today. (See Sacrobosco's incorrect theory on month lengths [below] for stories purporting otherwise.)

The Julian reform did not change the method used to account days of the month in the pre-Julian calendar, based on the Kalends, Nones and Ides, nor did it change the positions of these three dates within the months. Macrobius states that the extra days were added immediately before the last day of each month to avoid disturbing the position of the established religious ceremonies relative to the Nones and Ides of the month.[25]

There is debate about the exact position of the bissextile day in the early Julian calendar. The earliest direct evidence is a statement of the 2nd century jurist Celsus, who states that there were two-halves of a 48-hour day, and that the intercalated day was the "posterior" half. An inscription from AD 168 states that a.d. V Kal. Mart. was the day after the bissextile day. The 19th century chronologist Ideler argued that Celsus used the term "posterior" in a technical fashion to refer to the earlier of the two days, which requires the inscription to refer to the whole 48-hour day as the bissextile. Some later historians share this view. Others, following Mommsen, take the view that Celsus was using the ordinary Latin (and English) meaning of "posterior". A third view is that neither half of the 48-hour "bis sextum" was originally formally designated as intercalated, but that the need to do so arose as the concept of a 48-hour day became obsolete.[28]

There is no doubt that the bissextile day eventually became the earlier of the two days for most purposes. In 238 Censorinus stated that it was inserted after the Terminalia (23 February) and was followed by the last five days of February, i.e., a.d. VI, V, IV, III and prid. Kal. Mart. (which would be 24 to 28 February in a common year and the 25th to 29th in a leap year). Hence he regarded the bissextum as the first half of the doubled day. All later writers, including Macrobius about 430, Bede in 725, and other medieval computists (calculators of Easter) followed this rule, as does the liturgical calendar of the Roman Catholic Church. However, Celsus' definition continued to be used for legal purposes. It was incorporated into Justinian's Digest,[29] and in the English statute De anno et die bissextili of 1236,[30] which was not formally repealed until 1879. 006ab0faaa

the crusaders scratch album download

igi origins download for pc ocean of games

ceiling fan autocad block free download

famous football players pictures download

mehter marlar