Texas Tech:
Zhu, W.; Liu, C.; Liao, J.; Shi, S.; Ye, Z.; Yu, H.; Sun, Q.; Shamshina, J. L.; Shen, X. Lignin-carbohydrate complex simulated biodegradable film with excellent strength and negligible environmental impact. Sustainable Materials & Technologies 2025, https://doi.org/10.1016/j.susmat.2025.e01591.
Panackal Shibu, R.; Jafari, M.; Sagala, S. L.; Shamshina, J. L. Chitin Nanowhiskers: A Review of Manufacturing, Processing, and the Influence of Content on Composite Reinforcement and Property Enhancement. RSC Applied Polymers 2025, https://doi.org/10.1039/D5LP00104H.
Shi, S.; Wang, Y.; Ye, Z.; Xie, H.; Liu, C.; Liao, J.; Zhao, D.; Sun, Q.; Shamshina, J. L.; Shen, X. Dual-Working-Pattern Nanosheet-Based Hydrogel Sensors for Constructing Human-Machine and Physiological-Electric Interfaces. Advanced Science 2025, e14301, https://doi.org/10.1002/advs.202414301S.
Jayalath, P.; Ananthakrishnan, K.; Jeong, S.; Shibu, R.P.; Zhang, M.; Kumar, D.; Yoo, C.G.; Shamshina, J.L.; Therasme, O. Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights. Processes 2025, 13, 1591. https://doi.org/10.3390/pr13051591.
Zannat, A.; Eason, I.; Wylie, B.; Rogers, R. D.; Berton, P.; Shamshina, J. L. Comparative Analysis of Chitin Isolation Techniques from Mushrooms: Toward Sustainable Production of High-Purity Biopolymer. Green Chem. 2025, 27, 3217-3233. https://doi.org/10.1039/D4GC06388K.
Zannat, A.; Shamshina, J. L. Chitin isolation from crustaceans and mushrooms: The need for quantitative assessment. Carbohydrate Polymers 2025, 348,122882. https://doi.org/10.1016/j.carbpol.2024.122882.
Rajan, K.; Berton, P.; Rogers, R.D.; Shamshina, J.L. Is Kraft Pulping the Future of Biorefineries? A Perspective on the Sustainability of Lignocellulosic Product Development. Polymers 2024, 16, 3438. https://doi.org/10.3390/polym16233438.
Shkuratov, A. S.; Panackal Shibu, R.; Therasme, O.; Berton, P.; Shamshina, J. L. Sustainable Production of Chitin Nanowhiskers from Crustacean Biomass Using Cost-Effective Ionic Liquids: Strategies to Avoid Byproduct Formation. Sustainable Chem. 2024, 5(2), 130-148. https://doi.org/10.3390/suschem5020010.
Basak. T.; Shamshina, J. L. Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: Importance of Chitin Types, Solvents, Cross-linkers, and Fabrication Techniques. Pharmaceutics 2024, 16(6), 777. https://doi.org/10.3390/pharmaceutics16060777.
Wysocki, M.; Stachowiak, W.; Smolibowski, M.; Olejniczak, A.; Niemczak, M.; Shamshina, J. L. Rethinking the Esterquats: Synthesis, Stability, Ecotoxicity and Applications of Esterquats Incorporating Analogs of Betaine or Choline as the Cation in Their Structure. Int. J. Mol. Sci. 2024, 25(11), 5761. https://doi.org/10.3390/ijms25115761.
Liao, J.; Shamshina, J. L.; Wang, Y.; Sun, D.; Shen, X.; Zhao, D.; Sun, Q. Emerging Cellulosic Materials for Sustainable Mechanosensing and Energy Harvesting Devices: Advances and Prospect. Nano Today 2024, 56, 102232. https://doi.org/10.1016/j.nantod.2024.102232.
Shamshina, J. L.; Berton, P. Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review. Int. J. Mol. Sci. 2024, 25, 1720. https://doi.org/10.3390/ijms25031720.
Meng, Q.; Ye, Z.; Wang, Y.; Liu, C.; Sun, Q.; Shamshina, J. L.; Shen, X. Self-micropatterned wood hydrophone for underwater detection. Adv. Funct. Mater. 2023, 2304104. https://doi.org/10.1002/adfm.202304104.
Wang, Y.; Liao, J.; Liu, C.; Sun, Q.; Shamshina, J. L.; Shen, X. A cilia-inspired micropatterned sensor with a high-permittivity dielectric hydrogel for ultrasensitive mechanoreception both in air and underwater. J. Mater. Chem. A 2023, 11, 26562 – 26572. https://doi.org/10.1039/D3TA05884K.
Shamshina, J. L.; Rogers, R. D. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem. Rev. 2023, 123(20), 11894 – 11953. https://doi.org/10.1021/acs.chemrev.3c00384.
Hoque, E.; Tran, P.; Jacobo, U.; Bergfeld, N.; Acharya, S.; Shamshina, J. L.; Reid, T. W.; Abidi, N. Antimicrobial Coatings for Medical Textiles via Reactive Organo-selenium Compounds. Molecules 2023, 28(17), 6381. https://doi.org/10.3390/molecules28176381.
Shamshina, J.L.; Berton, P. Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials. Int. J. Mol. Sci. 2023, 24, 7866. https://doi.org/10.3390/ijms24097866.
Berton, P.; Shamshina, J. L. Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems. Pharmaceuticals 2023, 16(2), 272. https://doi.org/10.3390/ph16020272.
Shen, X.; Zhao, D.; Xie, Y.; Wang, Q.; Shamshina, J. L.; Rogers, R. D.; Sun, Q. Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Adv. Funct. Mater. 2023, 2214317. https://doi.org/10.1002/adfm.202214317.
(Invited Personal Perspective to the Special Issue: Modern Aspects of Ionic Liquids.) Shamshina, J. L.; Rogers, R. D. Commercialization of Ionic Liquids in Pursuit of Green Chemistry: Must We Each Become an Entrepreneur? The Chemical Record 2023, 23(8), e202200256. https://doi.org/10.1002/tcr.202200256.
Hoque, E.; Acharya, S.; Shamshina, J. L.; Abidi, N. Review of Foam Application to Cotton Textiles. Textile Res. J. 2023, 93(1-2), 486 – 501. https://doi.org/10.1177/00405175221107400.
(This article belongs to the Special Issue: Special Issue: Spectroscopic Analysis and Molecular Modification of Nanomaterials): Rumi, S. S.; Liyanage, S.; Shamshina, J. L.; Abidi, N. Effect of Microwave Plasma Pre-treatment on Cotton Cellulose Dissolution. Molecules 2022, 27(20), 7007. https://doi.org/10.3390/molecules27207007.
(This article belongs to the Special Issue: A Themed Issue in Honor of Professor Robin D. Rogers - "A Scientific Journey within Green Chemistry") Rachiero, G. P.; Berton, P.; Shamshina, J. L. Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization. Molecules 2022, 27(19), 6606. https://doi.org/10.3390/molecules27196606. Also announced as an entry on "Deep Eutectic Solvents for Biomass-Based Waste Valorization" in MDPI Encyclopedia: https://encyclopedia.pub/entry/29071.
Shamshina, J. L.; Abidi, N. Isolation of Chitin Nano-whiskers Directly from Crustacean Biomass Waste in a Single Step with Acidic Ionic Liquid. ACS Sustainable Chem. Eng. 2022, 10(36), 11846–11855. https://doi.org/10.1021/acssuschemeng.2c02461.
(This article belongs to the Special Issue: A Themed Issue in Honor of Professor Robin D. Rogers - "A Scientific Journey within Green Chemistry") Lyon, D. R.; Smith, B. R.; Abidi, N.; Shamshina, J. L. Deproteinization of Chitin Extracted with the Help of Ionic Liquids. Molecules 2022, 27, 3983. https://doi.org/10.3390/molecules27133983.
Berton, P.; Abidi, N.; Shamshina, J. L. Ionic liquids: Implementing Objectives of Sustainability for the Next Generation Chemical Processes and Industrial Applications. Curr. Opin. Green Sustain. Chem. 2022, 35, 100625. https://doi.org/10.1016/j.cogsc.2022.100625.
Shamshina, J. L.; Acharya, S.; Rumi, S. S.; Liyanage, S.; Parajuli, P.; Abidi, N. Cryogenic Grinding of Cotton Fiber Cellulose: the Effect on Physicochemical Properties. Carbohydrate Polym. 2022, 119408. https://doi.org/10.1016/j.carbpol.2022.119408.
(Invited for a Special Issue on bio-product extraction.) Achinivu, A. C.; Shamshina, J. L.; Rogers, R. D. Chitin Extracted from Various Biomass Sources: It’s Not the Same. Fluid Phase Equil. 2022, 552, 113286. https://doi.org/10.1016/j.fluid.2021.113286.
Acharya, S.; Liyanage, S.; Parajuli, P.; Rumi, S. S. Shamshina, J. L.; Abidi, N. Utilization of Cellulose to its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers (Basel) 2021, 13(24), 4344. https://doi.org/10.3390/polym13244344.
(Invited for the Marine-based Green Chemistry-themed collection.) Shamshina, J. L.; Abidi, N. Choosing the Right Strategy: Cryogrinding vs Ball Milling – Comparing Apples to Apples. Green Chem. 2021, 9646 – 9657. https://doi.org/10.1039/d1gc03128g.
Liyanage, S.; Acharya, S.; Parajuli, P.; Shamshina, J. L. Production and Surface Modification of Cellulose Bioproducts. Polymers (Basel) 2021, 13(19), 3433. https://doi.org/10.3390/polym13193433.
Shamshina, L.; Abidi, N. Cellulose Nanocrystals from Ionic Liquids: A Critical Review. Green. Chem. 2021, 23, 6205 – 6222. https://doi.org/10.1039/D1GC02507D.
(Invited for a Special Issue “Frontiers of Ionic Liquids”) Shamshina, J. L.; Qin, Y.; Belmore, K.; Daly, D. T.; Rogers, R. D. Switchable Carbamate Coagulants to Improve Recycling Ionic Liquid from Biomass Solutions. GreenChE 2021, 2(4), 384 – 391. https://doi.org/10.1016/j.gce.2021.07.001.
Parajuli, P.; Acharya, S.; Shamshina, J. L.; Abidi, N. Tuning the Morphological Properties of Cellulose Aerogels: An Investigation of Salt-Mediated Preparation. Cellulose 2021, 28, 7559 – 7577. https://doi.org/10.1007/s10570-021-04028-w.
Shamshina, J. L.; Wineinger, H. B.; Choudhary, H.; Vaid, T. P.; Kelley, S. P.; Rogers, R. D. Confusing Ions on Purpose: How Many Parent Acid Molecules Can be Incorporated in a Herbicidal Ionic Liquid? ACS Sustainable Chem. Eng. 2021, 9(4), 1941 – 1948. https://doi.org/10.1021/acssuschemeng.0c08797.
525 Solutions/ Mari Signum, LLC
(Invited for the special issue “Ionic Liquids in Drug Development, Formulation, and Delivery”) Shamshina, J. L.; Rogers, R. D. Are Myths and Preconceptions Preventing us from Applying Ionic Liquid Forms of Antiviral Medicines to the Current Health Crisis? Int. J. Mol. Sci. 2020, 21(17), 6002 – 6018. https://doi.org/10.3390/ijms21176002.
Wineinger, H.; Kelly, A.; Shamshina, J. L.; Rogers, R. D. Farmed Jumbo Shrimp Molts: An Ionic Liquid Strategy to Increase Chitin Yield per Animal while Controlling Molecular Weight. Green Chem. 2020, 22, 6001 – 6007. https://doi.org/10.1039/D0GC02216K.
Wineinger, H.; Shamshina, J.; Kelly, A.; King, C.; Rogers, R. D. A Method for Determining the Uniquely High Molecular Weight of Chitin Extracted from Raw Shrimp Shells Using Ionic Liquids. Green Chem. 2020, 22, 3734-3741. https://doi.org/10.1039/D0GC00753F.
(Invited for special issue “Envisioning the Future of Industrial Bioprocesses Through Biorefinery”) Shamshina, J. L.; Berton, P. Use of Ionic Liquids in Chitin Biorefinery: A Systematic Review. Front. Bioeng. Biotechnol. 2020, 8, 11. https://doi.org/10.3389/fbioe.2020.00011.
(Invited) Shamshina, J. L.; Kelly, A.; Oldham, T.; Rogers, R. D. Agricultural Uses of Chitin Polymer. Environ. Chem. Lett. 2020, 18, 53 – 60. https://doi.org/10.1007/s10311-019-00934-5.
(Invited for a Special Issue) Berton, P.; Shen, X.; Rogers, R.; Shamshina, J. L. 110th Anniversary: High Molecular Weight Chitin and Cellulose Hydrogels from Biomass in Ionic Liquids without Chemical Crosslinking. Ind. & Eng. Chem. Res. 2019, 58, 19862 – 19876. https://doi.org/10.1021/acs.iecr.9b03078.
(Invited) Shamshina, J. L. Chitin in Ionic Liquids: Historical Insights on the Polymer’s Dissolution and Isolation. A Review. Green Chem. 2019, 21, 3974 – 3993. https://doi.org/10.1039/C9GC01830A.
Shen, X.; Xie, Y.; Wang, Q.; Yi, X.; Shamshina, J. L.; Rogers, R. D. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose 2019, 26, 4005 – 4019. https://doi.org/10.1007/s10570-019-02328-w.
Shamshina, J. L.; Berton, P.; Rogers, R. Advances in Functional Chitin Materials: A Review. ACS Sustainable Chem. Eng. 2019, 7, 6444 – 6457. https://doi.org/10.1021/acssuschemeng.8b06372.
McGill/ The University of Alabama
Shamshina, J. L.; Zavgorodnya, O.; Choudhary, H.; Frye, B.; Newbury, N.; Rogers, R. D. In Search of Stronger/Cheaper Chitin Nanofibers through Electrospinning of Chitin-Cellulose Composites Using an Ionic Liquid Platform. ACS Sustainable Chem. Eng. 2018, 14713 – 14722. https://doi.org/10.1021/acssuschemeng.8b03269.
Shamshina, J. L.; Rogers, R. D. Biopolymeric Microbeads as Alternatives to Synthetic Plastics. HPC Today 2018, 13(4), 9 – 12.
Berton, P.; Shamshina, J. L.; Ostadjoo, S.; King, C. A.; Rogers, R. D. Enzymatic Hydrolysis of Ionic Liquid-Extracted Chitin. Carbohydrate Polym. 2018, 199, 228 – 235. https://doi.org/10.1016/j.carbpol.2018.07.014.
Shamshina, J. L.; Zavgorodnya, O.; Berton, P.; Chhotaray, P. K.; Choudhary, H.; Rogers, R. D. An Ionic Liquid Platform for Spinning Composite Chitin-Poly(lactic acid) Fibers. ACS Sustainable Chem. Eng. 2018, 6, 10241 – 10251. https://doi.org/10.1021/acssuschemeng.8b01554.
Berton, P.; Shamshina, J. L.; Bica, K.; Rogers, R. D. Ionic Liquids as Fragrance Precursors: Smart Delivery Systems for Volatile Compounds. Ind. & Eng. Chem. Res. 2018, 57, 16069 – 16076. https://doi.org/10.1021/acs.iecr.8b02903.
(Invited) Cui, C.; Li, K.; Choudhary, H.; Shamshina, J.; Rogers, R. D. Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions? ECS Transaction 2018, 86(14), 215 – 229. https://doi.org/10.1149/08614.0215ecst.
Cui, C.; Li, K.; Choudhary, H.; Shamshina, J.; Rogers, R. D. Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions. ECS Meeting Abstracts 2018, 1862. https://doi.org/10.1149/MA2018-02/53/1862.
Mishra, M. K.; Kelley, S. P.; Shamshina, J. L.; Choudhary, H.; Rogers, R. D. Can Melting Point Trends Help Us Develop New Tools to Control the Crystal Packing of Weakly Interacting Ions? Cryst. Growth Des. 2018, 18, 597 – 601. https://doi.org/10.1021/acs.cgd.7b01680.
Ostadjoo, S.; Berton, P.; Shamshina, J. L.; Rogers, R. D. Scaling-up ionic liquid-based technologies: How much do we care about their toxicity? Prima facie information on 1-ethyl-3-methylimidazolium acetate. Toxicol. Sci. 2018, 161, 249 – 265. https://doi.org/10.1093/toxsci/kfx172.
King, C.; Shamshina, J.; Zavgorodnya, O.; Cutfield, T.; Block, L. E.; Rogers, R. D. Porous chitin microbeads for more sustainable cosmetics. ACS Sustainable Chem. Eng. 2017, 5, 11660 – 11667. https://doi.org/10.1021/acssuschemeng.7b03053.
King, C.; Stein, R. S.; Shamshina, J.; Rogers, R. D. MultiCP 13C NMR as a clean, quantitative method for measuring the purity of chitin. ACS Sustainable Chem. Eng. 2017, 5, 8011 – 8016. https://doi.org/10.1021/acssuschemeng.7b01589.
Shamshina, J. L.; Cojocaru, O. A.; Kelley, S. P.; Bica, K.; Wallace, S. P.; Gurau, G.; Rogers, R. D. Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. ACS Omega 2017, 2, 3483 – 3493. https://doi.org/10.1021/acsomega.7b00554.
Choudhary, H.; Pernak, J.; Shamshina, J. L.; Niemczak, M.; Giszter, R.; Chrzanowski, L.; Praczyk, T.; Marcinkowska, K.; Cojocaru, O. A.; Rogers, R. D. Two Herbicides in a Single Compound: Double Salt Herbicidal Ionic Liquids Exemplified with Glyphosate, Dicamba, and MCPA. ACS Sustainable Chem. Eng. 2017, 5(7), 6261 – 6273 https://doi.org/10.1021/acssuschemeng.7b01224.
Zhang, B.; Xie, F.; Shamshina, J. L.; Rogers, R. D.; McNally, T.; Wang, D.; Halley, P. J.; Truss, R. W.; Zhao, S.; Ling, C. Facile preparation of starch-based electroconductive films with ionic liquid. ACS Sustainable Chem. Eng. 2017, 5(6), 5457–5467. https://doi.org/10.1021/acssuschemeng.7b00788.
Sun, J.; Shi; J.; Murthy Konda, N. V. S. N., Campos, D.; Liu, D.; Nemser, S.; Shamshina, J.; Dutta, T.; Berton, P.; Gurau, G.; Rogers, R. D.; Simmons, B. A.; Singh, S. Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotech. Biofuels 2017, 10, 154. https://doi.org/10.1186/s13068-017-0842-9.
Berton, P.; Di Bona, K. R.; Yancey, D.; Rizvi, S. A. A.; Gray, M.; Gurau, G.; Shamshina, J. L.; Rasco, J. F..; Rogers, R. D. Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic. ACS Medicinal Chem. Lett. 2017, 8(5), 498 – 503. https://doi.org/10.1021/acsmedchemlett.6b00504.
Zhang, B.; Xie, F.; Shamshina, J. L.; Rogers, R. D.; McNally, T.; Halley, P. J.; Truss, R. W.; Chen, L.; Zhao, S. Dissolution of Starch with Aqueous Ionic Liquid under Ambient Conditions. ACS Sustainable Chem. Eng. 2017, 5, 3737 – 3741. https://doi.org/10.1021/acssuschemeng.7b00784.
Zavgorodnya, O.; Shamshina, J. L.; Bonner, J. R.; Rogers, R. D. Electrospinning Biopolymers from Ionic Liquids Requires Control of Different Solution Properties than Volatile Organic Solvents. ACS Sustainable Chem. Eng. 2017, 5(6), 5512 – 5519. https://doi.org/10.1021/acssuschemeng.7b00863.
Zavgorodnya, O.; Shamshina, J.; Mittenthal, M.; McCrary, P.; Rachiero, G.; Titi, H.; Rogers, R. D. Polyethylene Glycol Derivatization of the Non-active ion Ion in Active Pharmaceutical Ingredient Ionic Liquids Enhances Transdermal Delivery. New J. Chem. 2017, 41, 1499 – 1508. https://doi.org/10.1039/C6NJ03709G.
Shamshina, J. L.; Zavgorodnya, O.; Bonner, J. R.; Gurau, G.; Di Nardo, T.; Rogers, R. D. 'Practical' Electrospinning of Biopolymers in Ionic Liquids. ChemSusChem. 2017, 1, 106 – 111, https://doi.org/cssc.201601372.
King, C.; Shamshina, J.; Gurau, G.; Berton, P.; Khan, N. F. A. F.; Rogers, R. D. A platform for more sustainable chitin films from an ionic liquid process. Green Chem. 2016, 19, 117 – 126. https://doi.org/10.1039/C6GC02201D.
Shamshina, J.; Barber, P. S.; Gurau, G.; Griggs, C.; Rogers, R. D. Pulping of Crustacean Waste using Ionic Liquids: To Extract or Not to Extract? ACS Sustainable Chem. Eng. 2016, 4, 6072 – 6081. https://doi.org/10.1021/acssuschemeng.6b01434.
Shen, X.; Berton, P.; Shamshina, J.; Rogers, R. Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chem. 2016, 18, 5607 – 5620. https://doi.org/10.1039/C6GC01339B.
Zhang, B.; Xie, F.; Chen, L.; Li, X.; Truss, R. W.; Halley, P. J.; Shamshina, J. L.; McNally, T.; Rogers, R. D. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polym. 2016, 146, 67 – 79. https://doi.org/10.1016/j.carbpol.2016.03.056.
Shen, X.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Critical Review: Hydrogels Based on Cellulose and Chitin: Fabrication, Properties, and Applications. Critical Review. Green Chem. 2016, 18, 53-75. https://doi.org/10.1039/C5GC02396C.
Shen, X.; Shamshina, J.; Berton, P.; Bandomir, J.; Wang, H.; Gurau, G.; Rogers, R. D. Comparison of Hydrogels Prepared with Ionic Liquid-Isolated vs. Commercial Chitin and Cellulose. ACS Sustainable Chem. Eng. 2016, 4, 471 – 480. https://doi.org/10.1021/acssuschemeng.5b01400.
Shamshina, J. L.; Kelley, S. P.; Gurau, G.; Rogers, R. D. Chemistry: Develop ionic liquid drugs. Nature 2015, 528, 188-189. https://doi.org/10.1038/528188a.
Shadid, M.; Gurau, G.; Shamshina, J. L.; Chuang, B-C.; Hailu, S.; Guan, E.; Chowdhury, S.; Wu, J-T.; Rizvi, S. A. A.; Griffin, R. J.; Rogers, R. D. Sulfasalazine in Ionic Liquid Form with Improved Solubility and Exposure. MedChemComm 2015, 1837 – 1841. https://doi.org/10.1039/C5MD00290G.
Zhang, L. Chen, D. F. Xie, X. Li, R. W. Truss, P. Halley, J. L. Shamshina, R. D. Rogers and T. McNally. Understanding the structural disorganization of starch in water–ionic liquid solutions. Phys. Chem. Chem. Phys. 2015, 17, 13860 – 13871, https://doi.org/10.1039/C5CP01176K.
Wang, H.; Kelley, S. P.; Brantley, J. W.; Chatel, G.; Shamshina, J.; Pereira, J. F. B.; Debbeti, V.; Myerson, A. S.; Rogers, R. D. Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. Chem. Phys. Chem. 2015, 16, 993 – 1002, https://doi.org/10.1002/cphc.201402894.
Xie, F.; Flanagan, B. M.; Li, M.; Truss, R. W.; Halley, P. J.; Gidley, M. J.; McNally, T.; Shamshina, J. L.; Rogers, R. D. Characteristics of Starch-based Films with Different Amylose Contents Plasticised by 1-Ethyl-3-methylimidazolium Acetate. Carbohydr. Polym. 2015, 122, 160-168, https://doi.org/10.1016/j.carbpol.2014.12.072.
Pernak, J.; Niemczak, M.; Shamshina, J.; Gurau, G.; Głowacki, G.; Praczyk, T.; Marcinkowska, K.; Rogers, R. D. Metsulfuron-Methyl-based Herbicidal Ionic Liquids. J. Agric. Food. Chem. 2014, 63, 3357 – 3366, https://doi.org/10.1021/jf505782p.
Pernak, J.; Niemczak, M.; Giszter, R.; Shamshina, J.; Gurau, G.; Cojocaru, O. A.; Praczyk, T.; Marcinkowska, K.; Rogers, R. D. Glyphosate-Based Herbicidal Ionic Liquids with Increased Efficacy. ACS Sustainable Chem. Eng. 2014, 2, 2845–2851, https://doi.org/10.1021/sc500612y.
Shamshina, J. L.; Rogers, R. D. Overcoming the Problems of Solid State Drug Formulations with Ionic Liquids: When Opinions Crystallize is Progress Lost? Therapeutic Delivery 2014, 5, 489 – 491. https://doi.org/10.4155/tde.14.28.
Wang, H.; Gurau, G.; Shamshina, J. L.; Cojocaru, O. A.; Janikowski, J.; MacFarlane, D. R.; Davis, J. H. Jr.; Rogers, R. D. Simultaneous Membrane Transport of Two Active Pharmaceutical Ingredients by Charge Assisted Hydrogen Bond Complex Formation. Chem. Sci. 2014, 5, 3449 – 3456. https://doi.org/10.1039/c4sc01036a.
Xie, F.; Flanagan, B.; Li, M.; Sangwan, P.; Truss, R.; Halley, P.; Strounina, E.; Whittaker, A.; Gidley, M.; Dean, K.; Shamshina, J.; Rogers, R. D. McNally, T. Characteristics of Starch-based Films Plasticised by Glycerol and by the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate: a Comparative Study. Carbohydr. Polym. 2014, 111, 841 – 848. https://doi.org/10.1016/j.carbpol.2014.05.058.
Shamshina, J. L.; Gurau, G.; Block, L. E.; Hansen, L, Dingee, C.; Walters, A., Rogers, R. D. Chitin-Calcium Alginate Composite Fibers for Wound Care Dressings Spun from Ionic Liquid Solution. J. Mater. Chem. B 2014, 2, 3924 – 3936. https://doi.org/10.1039/C4TB00329B.
Barber, P. S.; Shamshina, J. L.; Rogers, R. D. A ‘Green’ Industrial Revolution: Using Chitin towards Transformative Technologies. Pure Appl. Chem. 2013, 85, 1693 – 1701. https://doi.org/10.1351/PAC-CON-12-10-14.
Cojocaru, O. A.; Bica, K.; Gurau, G.; Narita, A.; McCrary, P. D.; Shamshina, J. S.; Barber, P. S.; Rogers, R. D. Prodrug Ionic Liquids: Functionalizing Neutral Active Pharmaceutical Ingredients to Take Advantage of the Ionic Liquid Form. Med. Chem. Commun. 2013, 4, 559 – 563. https://doi.org/10.1021/cg400686e.
Cojocaru, O. A.; Shamshina, J. L.; Gurau, G.; Syguda, A.; Praczyk, T.; Pernak, J.; Rogers, R. D. Ionic Liquid Forms of the Herbicide Dicamba with Reduced Volatility and Increased Efficacy. Green Chem. 2013, 15, 2110 – 2120. https://doi.org/10.1039/C3GC37143C.
Cojocaru, O. A.; Shamshina, J. L.; Rogers, R. D. “Review/Preview: Prodrug Ionic Liquids. Chimica Oggi/Chemistry Today 2013, 31, 24 – 29.
Mateyawa, S.; Xie, D. F.; Truss, R. W.; Halley, P. J.; Nicholson, T. M.; Shamshina, J. L.; Rogers, R. D.; Boehm, M. W.; McNally, T. Effect of the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate on the Phase Transition of Starch: Dissolution or Gelatinization? Carbohydr. Polym. 2013, 94, 520 – 530. https://doi.org/10.1016/j.carbpol.2013.01.024.
Shamshina, J. S.; Barber, P. S.; Rogers, R. D. Ionic Liquids in Drug Delivery. Expert Opin. Drug Deliv. 2013, 10, 1367 – 1381. https://doi.org/10.1517/17425247.2013.808185.
Smiglak, M.; Hines, C. C.; Reichert, W. M.; Shamshina, J. L.; Beasley, P. A.; McCrary, P. D.; Kelley, S. P.; Rogers, R. D. Azolium Azolates from Reactions of Neutral azoles with 1,3-Diemethylimidazolium-2-carboxylate, 1,2,3-Trimethylimidazolium Hydrogen Carbonate, and N,N- Dimethylpyrrolidinium Hydrogen Carbonate. New J. Chem. 2013, 37, 1461 – 1469. https://doi.org/10.1039/C3NJ00147D.
Drab, D. M.; Shamshina, J. L.; Smiglak, M.; Cojocaru, O. A.; Kelley, S. P.; Rogers, R. D. Zinc-Assisted Synthesis of Imidazolium Tetrazolate Bi-heterocyclic Zwitterions with Variable Alkyl Bridge Length. Sci. China Chem. 2012, 55, 1620 – 1626. https://doi.org/10.1007/s11426-012-4676-9.
Drab, D. M.; Kelley, S. P.; Shamshina, J. L.; Smiglak, M.; Cojocaru, O. A.; Gurau, G.; Rogers, R. D. Reactivity of N-Cyanoalkyl-Substituted Imidazolium Halide Salts by Simple Elution through an Azide Anion Exchange Resin. Sci. China Chem. 2012, 55, 1683 – 1687. https://doi.org/10.1007/s11426-012-4664-0.
Focsan, A.; Bowman, M.; Shamshina, J.; Krzyaniak, M.; Magyar, A.; Polyakov, N.; Kispert, L. EPR Study of the Astaxanthin n-Octanoic Acid Monoester and Diester Radicals on Silica-Alumina. J. Phys. Chem. B 2012, 116, 13200 – 13210. https://doi.org/10.1021/jp307421e.
Ganta, A.; Shamshina, J. L.; Cafiero, L. R.; Snowden, T. S. Stereoselective Synthesis of cis- or trans-2,4-Disubstituted Butyrolactones from Wynberg Lactone. Tetrahedron 2012, 68, 5396 – 5398. https://doi.org/10.1016/j.tet.2012.04.107.
Drab, D. M.; Smiglak, M.; Shamshina, J. L.; Kelley, S. P.; Schneider, S.; Hawkins, T. W.; Rogers, R. D. Synthesis of N-Cyanoalkyl-Functionalized Imidazolium Nitrate and Dicyanamide Ionic Liquids with a Comparison of their Thermal Properties for Energetic Applications. New J. Chem. 2011, 35, 1701 – 1717. https://doi.org/10.1039/C0NJ00889C.
Bica, K.; Shamshina, J.; Hough. W. L.; MacFarlane, D. R.; Rogers, R. D. Liquid Forms of Pharmaceutical Co-crystals: Exploring the Boundaries of Salt Formation. Chem. Commun. 2011, 47, 2267-2269. https://doi.org/10.1039/C0CC04485G.
Pogodina, N. V.; Metwalli, E.; Müller-Buschbaum, P.; Wendler, K.; Lungwitz, R.; Spange, S.; Shamshina, J. L.; Rogers, R. D.; Friedrich, C. Peculiar Behavior of Azolium Azolate Energetic Ionic Liquids. J. Phys. Chem. Lett. 2011, 2, 2571 – 2576. https://doi.org/10.1021/jz201175v.
Cocalia, V.; Smiglak, M.; Kelley, S. P.; Shamshina, J. L.; Gurau, G.; Rogers, R. D. Crystallization of Uranyl Salts from Dialkylimidazolium Ionic Liquids or Their Precursors. Eur. J. Inorg. Chem. 2010, 2760 – 2767. https://doi.org/10.1002/ejic.201000162.
Drab, D. M.; Shamshina, J. L.; Smiglak, M.; Hines, C. C.; Cordes, D. B.; Rogers, R. D. A General Design Platform for Ionic Liquid Ions based on Bridged Multi-Heterocycles with Flexible Symmetry and Charge. Chem. Commun. 2010, 46, 3544 – 3546. https://doi.org/10.1039/c002861d.
Forton, M. S.; Sims, J. D.; Askins, R. E.; Stevenson, W. H.; Shamshina, J.; Smiglak, M.; Rogers, R. D.; Barrow, R. An Ionic Liquid-Based Next Generation Double Base Propellant Stabilizer,” In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 25-28 July 2010, Nashville, TN; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA; AIAA 2010-6587; pp 1-8.
Shamshina, J. L.; Smiglak, M.; Drab, D. M.; Parker, T. G.; Dykes, Jr., H. W. H.; Di Salvo, R.; Reich, A. J.; Rogers, R. D. Catalytic Ignition of Ionic liquids for Propellant Applications. Chem. Commun. 2010, 46, 8965 – 8967. https://doi.org/10.1039/C0CC02162H.
Shamshina, J.; Snowden, T. S. Convergent Synthesis of Potent COX-2 Inhibitor Inotilone. Tetrahedron Lett. 2007, 48, 3767 – 3769. https://doi.org/10.1016/j.tetlet.2007.03.166.
Shamshina, J.; Snowden, T. S. Practical Approach to α- or γ-Heterosubstituted Enoic Acids. Tetrahedron Lett. 2006, 8, 5881-5884. https://doi.org/10.1021/ol0625132.
Sheremetev, A. B.; Shamshina, Yu. L.; Dmitriev, D. E. Synthesis of 3-Alkyl-4-aminofurazans. Russian Chemical Bulletin 2005, 54, 1032 – 1034. https://doi.org/10.1007/s11172-005-0352-y.
Sheremetev, A. B.; Shamshina, Yu. L. Unusual Reaction of Iodofurazans with Nucleophilic Reagents. Full Russian Chemical Bulletin 2004, 53, 1124 – 1127. https://doi.org/10.1002/chin.200503045.
Sheremetev, A. B.; Shamshina, J. L.; Dmitriev, D. E.; Lyubetskii, D. V.; Antipin, M. Y. The First General Synthesis of 3-Iodo-4-R-furazans. Heteroatom Chemistry 2004, 15, 199 – 215. https://doi.org/10.1002/hc.20007.