Software, Code and Dataset
Kim, M., Wang, L. and Wang, H. (2025). Estimation and Inference of Quantile Spatially Varying Coefficient Models over Complicated Domains, Journal of the American Statistical Association, https://doi.org/10.1080/01621459.2025.2480867. Code and Data
Peng, X. and Wang, H. (2023). Inference for joint quantile and expected shortfall regression. Stat, 12(1), e619. https://doi.org/10.1002/sta4.619. Code and Examples
Peng, X. and Wang, H. (2022). A Generalized Quantile Tree Method for Subgroup Identification, Journal of Computational and Graphical Statistics, 31:3, 824-834, DOI: 10.1080/10618600.2022.2032723. Code and Examples
Yingying Zhang, Huixia Judy Wang & Zhongyi Zhu (2021) Single-index Thresholding in Quantile Regression, Journal of the American Statistical Association, DOI: 10.1080/01621459.2021.1915319. R Package SITQR & Documentation
Zhang, Y., Wang, H. and Zhu, Z. (2019). Quantile-regression-based clustering for panel data, Journal of Econometrics, DOI: 10.1016/j.jeconom.2019.04.005. R code for the simulation study
Agarwala, G., Sun, Y. and Wang, H. (2021). Copula-based multiple indicator kriging for non-Gaussian random fields, Spatial Statistics, 00524, https://doi.org/10.1016/j.spasta.2021.100524. R code (CMIK) and links to the datasets used in the application.
Li, F., Tang, Y. and Wang, H. (2019). Copula-based semiparametric analysis for time series data with detection limits, Canadian Journal of Statistics, DOI:10.1002/cjs.11503. R Package CopCTS
Tang, Y., Wang, H., Sun, Y. and Hering, A. (2019). Copula-based semiparametric models for spatio-temporal data, Biometrics, DOI:10.1111/biom.13066. R Package COST & Documentation
Gao, Z., Tang, Y., Wang, H., Wu, G. and Lin, J. (2019). Automatic shape-constrained nonparametric regression. Technical Report. R Package SCR
Wang, H., McKeague, I. and Qian, M. (2018). Testing for marginal linear effects in quantile regression, Journal of the Royal Statistical Society: Series B, 80, 433-452. R package QMET Help and Example File HIV-EFV data
R Package AdjBQR (Adjusted Bayesian Quantile Regression Inference)
Reference: Yang, Y., Wang, H. and He, X. (2016). Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood (Discussion Paper). International Statistical Review, 84, 327-344.
R package EXRQ (Extreme Regression of Quantiles)
Jiang, L., Bondell, H. and Wang, H. (2014). Interquantile shrinkage and variable selection in quantile regression. Computational Statistics and Data Analysis, 69, 208-219. R functions
Wang, H. and Li, D. (2013). Estimation of conditional high quantiles through power transformation. Journal of the American Statistical Association, 108, 1062-1074. R function Example
Bernhardt, P., Wang, H., and Zhang, D. (2014). Flexible modeling of survival data with covariates subject to detection limits. Computational Statistics and Data Analysis. 69, 81-91. Simulation code Application code Simulation data
Bernhardt, P., Wang, H., and Zhang, D. (2013). Statistical methods for generalized linear models with covariates subject to detection limits. Statistics in Biosciences, DOI 10.1007/s12561-013-9099-4. Simulation code Application code Simulation data
Jiang, L., Wang, H. J., and Bondell, H. D. (2013). Interquantile shrinkage in regression models. Journal of Computational and Graphical Statistics, 22, 970-986. R code Help and Example file
Wang, H., Zhou, J., and Li, Y. (2013). Variable selection for censored quantile regression, Statistica
Sinica, 23, 145-167. R functions and a simulation study
Wang, H. and Feng, X. (2012). Multiple imputation for M-regression with censored covariates, Journal of American Statistical Association, 107, 194-204. R code Example
Wang, H., Stefanski, L., and Zhu, Z. (2012). Corrected-loss estimation for quantile regression with covariate measurement error. Biometrika, 99, 405-421. R code Example
Sun, Y., Wang, H., and Gilbert, P. B. (2011). Quantile regression for competing risks data with missing cause of failure, Statistica Sinica, 22, 703-728. R functions and a simulation study
Pang, L., Lu, W., and Wang, H. (2012). Variance Estimation in Censored Quantile Regression via Induced Smoothing, Computational Statistics and Data Analysis, 56, 785-796. R functions and a simulation study
Tang, Y., Wang, H., Zhu, Z. and Song, X. (2011). A unified variable selection approach for varying coefficient models. Statistica Sinica, 22, 601-628. R functions and example for LS R functions and example for RQ
Wang, H. and Hu, J. (2010). Identification of differential aberrations in multiple-sample array CGH studies. Biometrics, 67, 353-362. R functions
Wang, H., and Zhu, Z. (2010). Empirical likelihood for marginal regression models with longitudinal data. Journal of Statistical Planning and Inference. 141, 1603-1615.
R functions used in the Simulation study
R functions used for the analysis of an ophthalmology data
Wang, H., Zhu, Z., and Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. Annals of Statistics, 37, 3841-3866. R functions An example
Bondell, H. D., Reich, B. J., and Wang, H. (2010). Non-crossing quantile regression curve estimation. Biometrika. 97, 825-838. R code Help and example
Reich, B. J., Bondell, H. D., and Wang, H. (2010). Flexible Bayesian quantile regression for independent and clustered data. Biostatistics, 11, 337-352. R code for independent and clustered data using the conditional and marginal model.
Wang, H., and Wang, L. (2009). Locally weighted censored quantile regression. Journal of American Statistical Association, 104, 1117-1128. R code
Wang, H. and Fygenson, M. (2009). Inference for censored quantile regression models in longitudinal studies. Annals of Statistics, 37, 756-781. R code
Wang, H. (2009). Inference on quantile regression for heteroscedastic mixed models. Statistica Sinica, 19, 1247-1261. R code for a simulated data set mimicking the swallow study
Wang, H. and He, X. (2008). An enhanced quantile approach for assessing differential gene expressions. Biometrics, 449-457. R code Mice data
Wang, H. and He, X. (2007). Detecting differential expressions in GeneChip microarray studies: a quantile approach. Journal of American Statistical Association, 102, 104-112.
R code: Quantile rank score test for models with a random intercept effect (clustered data). The R function is for more general models with a random intercept effect, and it can also be used for hypothesis testing for clustered data.