The Johnson Group at UNC Chapel Hill

Vision: Be an international leader in the development of new tools applicable to problems in organic and medicinal chemistry.

Goals: Develop cutting edge synthetic methods and share our results with the scientific community in publications, at conferences, and through outreach.

Values: Cultivate an environment that encourages, expects, and celebrates excellence, and welcomes diverse people, ideas, and experiences.

Group News

Recent Research

Arene cyclopropanation offers a direct route to higher-order, non-aromatic carbocycles; however, the inherent issue of dictating site selectivity has cumbered the development of novel intermolecular reactions that directly engage the arene pool. This paper describes a highly regio- and stereoselective, Rh2[(S)-PTTL]4-catalyzed arene cyclopropanation using α-cyanodiazoacetates to afford stable norcaradienes bearing three stereogenic centers, one of which is an all-carbon quaternary center. The enantioenriched norcaradienes served as tunable templates for further transformation into stereochemically dense, fused and bicyclic carbocycles containing transmutable functionality.

Catalyzed stereoconvergent 1,4-additions to unsaturated carbonyls are rare but of high potential value. This letter details the development of enantioselective arylation reactions of boronic acids and β,γ-butenolides. These reactions are catalyzed by commercially available hydroxy[(S)-BINAP]-rhodium(I) dimer to afford stereochemically complex γ-butyrolactone derivatives. The reaction products provide functionality amenable to further manipulation and can lead to products with up to three contiguous stereocenters. The reaction proceeds under a dynamic kinetic resolution manifold by isomerizing the achiral starting material into an interconverting mixture of enantiomeric conjugate acceptors, followed by catalyst-controlled, enantiomer-selective 1,4-addition. Base-promoted racemization of the intermediate α,β-butenolide is possible due to the high kinetic and thermodynamic acidity of the γ-proton.