Michael-aldol domino reactions are powerful tools for rapidly assembling carbocyclic scaffolds. We herein disclose a base-catalyzed Michael-aldol domino reaction of trisubstituted Michael acceptors with β-keto ester nucleophiles. The cyclohexanone products are obtained in excellent diastereoselectivity (up to >20:1 dr) and good yields (up to 84%). An attractive practical consideration is that pure products are isolated directly via filtration of the unpurified reaction mixtures. Further functionalization of the cyclohexanones is achieved without perturbation of stereocenters installed through the preceding annulation.
An efficient synthesis of chiral nonracemic diene ligands is facilitated by an enantioselective dearomative intermolecular arene cyclopropanation of anisole. The functionality of the resulting cycloheptatriene engenders distinct chemical environments in a downstream tricyclic bis(enol) triflate that permits selective late-stage functionalization. The synthesis of diverse C1- and pseudo-C2-symmetric dienes is therefore viable by iterative palladium-catalyzed cross-coupling reactions. The ligands provide moderate to high selectivities in known Rh(I)-mediated asymmetric transformations.