Lecture I: Motivation, Definitions and the statement of the Szemerédi Regularity Lemma. Preparation for the proof.
Lecture II: Szemerédi Regularity Lemma: Definitions, proof. Slicing Lemma. Embedding Lemma.
Lecture III: Proof of Erdõs-Stone Theorem using Turán Theorem and Szemerédi Regularity Lemma. Counting K_r-free graphs, stability version. Ramsey function R(G,G) is linear for bounded degree graphs.
Lecture IV: Counting Lemma, Removal lemma, (6,3)-Theorem, Induced Matching, Equivalence of (6,3), Induced Matching, 3-AP Theorems.
Lecture V: Corner Theorem, Corner implies Szemerédi Theorem, weak hypergraph regularity lemma, simplex removal lemma, Behrend construction.
Lecture VI: Multicolored Regularity Lemma, Degree version, Blow-up lemma, Sparse regularity lemma, Alon-Fischer-Krievelich-Szegedy Regularity lemma, Number of induced C_4-free graphs.
Lecture VII: Property testing (triangle-free), Ramsey-Turan K_4-free, number of edges of critical 2-diameter graphs. Caccetta-Haggvist Conjecture.
Lecture VIII: Number of triangles in K_{1,2,2}-free graphs, Axenovich: edge-colorings with at least 9 different colors in every K_5, the number of maximal triangle-free graphs.
Lecture IX: Volume computing of metric polytope. Luczak: minimum degree > n/3, triangle-free implies bounded chromatic number.
Lecture X: Sudakov-Tomon: the extremal number of bipartite K_{t,t}-free graph H, with one side having maximum degree t.
Lecture XI: Container introduction, graph container algorithm, number of q-colorings of d-regular graphs. typed notes
Lecture XII: Alon-Friedgut-Kalai-Kindler: Independence number of random subgraphs of a graph. Number of antichains in Boolean lattice. typed notes.
Lecture XIII: Sperner Theorem, supersaturation. Balogh-Mycroft-Treglown: random variant of Sperner Theorem. typed notes
Lecture XIV: The number of Sidon sets. typed notes.
Lecture XV: The number of C_4-free graphs (Kleitman-Winston). typed notes.
Lecture XVI: List coloring (from Alon-Spencer book). typed notes.
Lecture XVII: Applications of container lemma: Random Szemerédi, Random Turán Theorems. typed notes.
Lecture XVIII: Number of Maximal Triangle-free graphs. Volume of Metric Polytopes. typed notes.
Lecture XIX: (3,4)-problem, epsilon-nets. typed notes.
Lecture XX: Random Ramsey numbers, Folkman numbers. typed notes.
Lecture XXI: 3-uniform hypergraph container lemma, via Balogh-Wagner. typed notes.
Lecture XXII: k-uniform hypergraph container lemma. typed notes.
Lecture XXIII: Saxton - Thomason: Simple probabilistic proof for linear hypergraphs. typed notes.
Lecture XXIV: Number of Maximal sumfree sets (based on BLST). typed notes.
Lecture XXV: Proof of the KLR-Conjecture (based on BMS). typed notes.
Lecture XXVI: Ferber-McKinley-Samotij: supersaturation; to count bipartite graphs. typed notes.
Lecture XXVII: Number of independents sets in the hypercube. typed notes.
Lecture XXVIII: Edge-random EKR-Theorem typed notes.
Lecture XXIX: Introduction to Fourier method, number of monochromatic 3-AP's in 2-coloring of integers. typed notes.
Lecture XXX: Roth Theorem, positive density subsets of [n] contains 3-AP, via Fourier method. typed notes.
Lecture XXXII: Solymosi: Wickets in 3-uniform hypergraphs.
Lecture XXXI: Number of k-SAT functions, rooted/weighted Hypergraph Turán Theorem.
Lecture XXXIII: Number of k-SAT functions, rooted/weighted Hypergraph Turán Theorem: explanation of the reduction step.