33. Ghosh, A., and Singh, J.* (2025). Deubiquitinase USP-14 controls intestinal distension-induced immune activation in Caenorhabditis elegans via Wnt/β-catenin signaling. bioRxiv doi.org/10.1101/2025.11.25.690479
32. Ravi, and Singh, J.* (2025). An acyltransferase protects Caenorhabditis elegans from thiol reductive stress through an autoinhibitory hypoxia response pathway. bioRxiv doi.org/10.1101/2025.10.09.681334
31. Gahlot, S., Subodh, and Singh, J.* (2025). Bacterial metabolism of tryptophan causes toxicity in Caenorhabditis elegans. bioRxiv doi.org/10.1101/2025.06.09.658597
30. Das, P., Ravi, and Singh, J.* (2025). Iron-deplete diet enhances Caenorhabditis elegans lifespan via oxidative stress response pathways. EMBO J. doi.org/10.1038/s44318-025-00634-7 (See preprint)
29. Rao, R., Aballay, A., and Singh, J.* (2025). Inhibition of the UFD-1-NPL-4 complex triggers an aberrant immune response in Caenorhabditis elegans. eLife 13, RP94310. (See preprint)
28. Rao, R., and Singh, J.* (2025). Innate immune and endoplasmic reticulum unfolded protein response pathways protect Caenorhabditis elegans against chloroquine toxicity. J. Biosci. 50, 15.
27. Ravi, and Singh, J.* (2025). Redox imbalance and hypoxia-inducible factors: a multifaceted crosstalk. FEBS J. 292, 3833-3848.
26. Das, P., Aballay, A., and Singh, J.* (2024). Calcineurin inhibition enhances Caenorhabditis elegans lifespan by defecation defects-mediated calorie restriction and nuclear hormone signaling. eLife 12, RP89572. (See preprint) (eLife digest: A gutting role)
25. Ghosh, A., and Singh, J.* (2024). Translation initiation or elongation inhibition triggers contrasting effects on Caenorhabditis elegans survival during pathogen infection. mBio 15, e02485-24. (See preprint)
24. Gahlot, S., and Singh, J.* (2024). Caenorhabditis elegans neuronal RNAi does not render other tissues refractory to RNAi. Proc. Natl. Acad. Sci. U. S. A. 121, e2401096121.
23. Ravi, Kumar, A., Bhattacharyya, S., and Singh, J.* (2023). Thiol reductive stress activates the hypoxia response pathway. EMBO J. 42, e114093. (See preprint)
22. Singh, J.* (2023). ERASing endoplasmic reticulum stress: the faster, the better. Trends Cell Biol. 33, 179-181.
21. Chadha, J., Ravi, Singh, J., and Harjai, K. (2023). α-Terpineol synergizes with gentamicin to rescue Caenorhabditis elegans from Pseudomonas aeruginosa infection by attenuating quorum sensing-regulated virulence. Life Sci. 313, 121267.
20. Chadha, J., Ravi, Singh, J., Chhibber, S., and Harjai, K. (2022). Gentamicin Augments the Quorum Quenching Potential of Cinnamaldehyde In Vitro and Protects Caenorhabditis elegans From Pseudomonas aeruginosa Infection. Front. Cell. Infect. Microbiol. 12, 899566.
19. Gokul, G., and Singh, J.* (2022). Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle. eLife 11, e76021. (See preprint) (eLife digest: Tracing a toxic target)
18. Singh, J.* (2021). Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Mol. Genet. Genomics, 296, 1-20.
17. Gokul, G., and Singh, J.* (2020). Extracellular Proteostasis: Laying Siege to Pathogens. Curr. Biol. 30, R1085-R1087.
16. Singh, J.* (2020). Phase Separation of RNA Helicase Triggers Stress-Responsive Translational Switch. Trends Biochem. Sci. 45, 726-728.
15. Singh, J.*, and Aballay, A. (2020). Bacterial Lawn Avoidance and Bacterial Two Choice Preference Assays in Caenorhabditis elegans. Bio-protocol 10, e3623. (*Corresponding author)
14. Singh, J., and Aballay, A. (2020). Neural control of behavioral and molecular defenses in C. elegans. Curr. Opin. Neurobiol. 62, 34-40.
13. Singh, J., and Aballay, A. (2019). Intestinal infection regulates behavior and learning via neuroendocrine signaling. eLife 8, e50033. (eLife digest: Learning to stay away)
12. Singh, J., and Aballay, A. (2019). Similar Neural Pathways Control Foraging in Mosquitoes and Worms. mBio 10, e00656-19.
11. Singh, J., and Aballay, A. (2019). Microbial Colonization Activates an Immune Fight-and-Flight Response via Neuroendocrine Signaling. Dev. Cell 49, 89-99. (Preview: Lee, Y.-T., and Wang M.C. (2019). The Bacterivore’s Solution: Fight and Flight to Promote Survival. Dev. Cell 49, 7-9.)
10. Kumar, H., Singh, J., Kumari, P., and Udgaonkar, J. B. (2017). Modulation of the extent of structural heterogeneity in α-synuclein fibrils by the small molecule thioflavin T. J. Biol. Chem. 292, 16891-16903.
9. Singh, J., and Aballay, A. (2017). Endoplasmic reticulum stress caused by lipoprotein accumulation suppresses immunity against bacterial pathogens and contributes to immunosenescence. mBio 8, e00778–17.
8. Martin, N., Singh, J., and Aballay, A. (2017). Natural genetic variation in the Caenorhabditis elegans response to Pseudomonas aeruginosa. G3 (Bethesda) 7, 1137–1147.
7. Singh, J., and Udgaonkar, J. B. (2016). Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. J. Mol. Biol. 428, 1345-1355.
6. Singh, J., and Udgaonkar, J. B. (2016). The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated. Biochemistry 55, 459–469.
5. Singh, J., and Udgaonkar, J. B. (2015). Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 54, 4431−4442.
4. Singh, J., and Udgaonkar, J. B. (2015). Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew. Chem., Int. Ed. 54, 7529−7533.
3. Singh, J., Kumar, H., Sabareesan, A. T., and Udgaonkar, J. B. (2014). Rational stabilization of helix 2 of the prion protein prevents its misfolding and oligomerization. J. Am. Chem. Soc. 136, 16704−16707.
2. Singh, J., and Udgaonkar, J. B. (2013). Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry. J. Mol. Biol. 425, 3510−3521.
1. Singh, J., Sabareesan, A. T., Mathew, M. K., and Udgaonkar, J. B. (2012). Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm like amyloid fibrils. J. Mol. Biol. 423, 217−231.