Full text is available either at arXiv or at the journal site.
[1] J. Fernández de Bobadilla. A monotonous C1 function whose composition with a Riemann integrable one is not Riemann integrable. Real analysis exchange 22.1, (1996-97), 404-405.
[2] J. Fernández de Bobadilla. Approximations of non-isolated singularities of finite codimension with respect to an isolated complete intersection singularity. Bull. London Math. Soc. 35 no. 6 (2003), 812-816.
[3] J. Fernández de Bobadilla.Topological finite determinacy of functions with non-isolated singularities. Comment. Math. Helv. 79 (2004), 659-688.
[4] J. Fernández de Bobadilla. Relative Morsification Theory. Topology 43 (2004), 925-982.
[5] J. Fernández de Bobadilla. A new geometric proof of Jung’s Theorem on factorization of automorphisms. Proc. Amer. Math. Soc. 133 (2005) no.1, 15-19.
[6] J. Fernández de Bobadilla. Moduli spaces of polynomials in two variables. Mem. Amer. Math. Soc. 173 (2005), nº 817, 136 pages.
[7] J. Fernández de Bobadilla. A reformulation of Lê’s conjecture. Indagationes Math. 17 (3) (2006), 345-352.
[8] J. Fernández de Bobadilla. Answers to some equisingularity questions. Invent. Math. 161 (2005), no. 3, 657-675.
[9] J. Fernández de Bobadilla, I. Luengo, A. Melle, A. Nemethi. On rational cuspidal projective plane curves. Proc. London Math. Soc. (3) 92 (2006), no. 1, 99-138.
[10] J. Fernández de Bobadilla, I. Luengo, A. Melle, A. Nemethi. Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair. Real and complex singularities, 31–45, Trends Math., Birkhäuser, Basel, 2007.
[11] J. Fernández de Bobadilla, I. Luengo, A. Melle, A. Nemethi. On rational cuspidal curves, open surfaces and local singularities. Singularity theory, 411–442, World Sci. Publ., Hackensack, NJ, 2007.
[12] J. Fernández de Bobadilla, T GaffneyThe Lê number of the square of a function and its applications. J. Lond. Math. Soc. (2) 77 (2008), no 3, 545–557.
[13] J. Fernández de Bobadilla, M. Pe Pereira. Equisingularity at the normalisation. J. of Topology. 1 (2008), no 4, 879-909.
[14] E. Artal-Bartolo, J. Fernández de Bobadilla, I. Luengo-Velasco, A. Melle-Hernández Milnor number of weighted Le-Imodim singularities. IMRN (2010), no.22, 4301–4318.
[15] J. Fernández de Bobadilla. On homotopy types of complements of analytic sets and Milnor fibres. Topology of algebraic varieties and singularities, 363–367, Contemp. Math., 538, Amer. Math. Soc., Providence, RI, 2011.
[16] J. Fernández de Bobadilla. Nash problem for surface singularities is a topological problem. Adv. Math. 230 (2012), no 1, 131–176.
[17] J. Fernández de Bobadilla, J. Kollár. Homotopically trivial deformations. J. Singul. 5 (2012), 85–93.
[18] J. Fernández de Bobadilla, M. Pe Pereira. The Nash problem for surfaces. Annals of Math. 176 (2012), no3, 2003-2029.
[19] J. Fernández de Bobadilla. On algebraic representatives of topological types of analytic hypersurface germs. J. of Algebraic Geometry 21 (2012), 789-797.
[20] J. Fernández de Bobadilla. Topological equisingularity of hypersurface singularities with 1-dimensional critical set. Advances in Math. 248 (2013), 1199-1253.
[21] J. Fernández de Bobadilla, M. Marco Buzunariz. Topology of hypersurface singularities with 3-dimensional critical set. Comm. Math. Helv. 88 no. 2, (2013), 253-304.
[22] J. Fernández de Bobadilla, J. Fresán, V. Muñoz, A. Murillo. The Hilali Conjecture for hyperelliptic spaces. Mathematics without boundaries. Surveys in pure mathematics. New York, NY: Springer (ISBN 978-1-4939-1105-9/hbk; 978-1-4939-1106-6/ebook). 21-36 (2014).
[23] J. Fernández de Bobadilla, A. Menegon.The boundary of the Milnor fibre of complex and real analytic non-isolated singularities. Geom. Dedicata 173, 143-162 (2014).
[24] J. Fernández de Bobadilla, J. Snoussi, M. Spivakovsky. Equisingularity in one parameter families of generically reduced curves. IMRN (2017),no. 5, 1589–1609.
[25] J. Fernández de Bobadilla, M. Pe Pereira, P. Popescu-Pampu. On the generalised Nash problem of smooth germs and adjacencies of curve singularities. Advances in Mathematics 320, 1269-1317 (2017).
[26] A. Fernandes, J. Fernández de Bobadilla, E. Sampaio, Multiplicity and degree as bi-Lipschitz invariants for complex germs. J. of Topology vol. 11 (2018), n. 4, 957–965.
[27] J. Fernández de Bobadilla, J. Nuño-Ballesteros, G. Peñafort. A Jacobian module for disentanglements and applications to Mond's conjecture. Revista Matemática Complutense 32, 395-418, (2019).
[28] J. Fernández de Bobadilla, M. Pe Pereira. The Nash problem from a geometric and topological perspective. ArXiv: 1805:01418. Proceedings of the conference “Arc schemes and singularities”. Bourqui, Nicaise and Sebag (eds). World scientific (2020).
[29] M. Agustín, J. Fernández de Bobadilla. Intersection space constructible complexes. Doc. Math. 25, 1653-1725 (2020)
[30] J. Fernández de Bobadilla, M. Pe Pereira, P. Portilla. Representation of surface automorphisms by tete a tete graphs. Ann. Inst. Fourier. Tome 71, no 6 (2021), p. 2649-2710.
[31]. J. Fernández-Bobadilla, S. Heinze, M. Pe-Pereira and J. E. Sampaio. Moderately Discontinuous Homology. Comm. Pure Appl. Math 75 Issue 10, (2022), 2123-2200.
[32].- N. Budur, J. Fernández de Bobadilla, Honc Duc Nguyen, Le Quy Thuong, Cohomology of Contact Loci. J. Differential Geom. 120(3): 389-409 (2022).
[33] J. Fernández de Bobadilla, A. Romano. Reflexive modules on normal Gorenstein Stein Surfaces, their deformations and moduli. Mem. Amer. Math. Soc. 298, nº 1493, (2024), 110p.
[34].- J. Fernández de Bobadilla, G. Peñafort, E. Sampaio. Topological invariants and Milnor Fibre for A-finite germs from C^2 to C^3. DaLat Univ. J. Science. Volume 12, Issue 2 (2022): Natural Sciences and Technology.
[35] J. Fernández de Bobadilla, S. Heinze, M. Pe Pereira. Moderately discontinuous homotopy. International Mathematics Research Notices, Volume 2022, Issue 23, December 2022, Pages 18346–18400, https://doi.org/10.1093/imrn/rnab225
[36] J. Fernández de Bobadilla, Topological equisingularity: old problems from a new perspective (With an appendix by G. -M. Greuel and G. Pfister on Singular). Handbook of Singularities, volume III, 145-202, J. L. Cisneros Molina, Lê Dung Trang, J. Seade (eds), Springer (2022).
[37] J. Fernández de Bobadilla, I. Pallarés. The Brasselet-Schurmann-Yokura conjecture on L-classes for projective rational homology manifolds. International Mathematics Research Notices. Volume 2024, Issue 19, October 2024, Pages 13085–13105, https://doi.org/10.1093/imrn/rnae19
[38] J. Fernández de Bobadilla, I. Pallarés, M. Saito. Hodge modules and cobordism classes. J. EMS, DOI 10.4171/JEMS/1387
[39] J. Fernández de Bobadilla, T. Pelka. “Symplectic monodromy at radius 0 and equimultiplicity of families with constant Milnor number. Annals of Math. 200, 153-299, (2024).
[40] N. Budur, J. de la Bodega, E. de Lorenzo, J. Fernández de Bobadilla, T. Pelka. “On the embedded Nash problem”. Forum Math. Pi. https://doi.org/10.1017/fmp.2024.13
[41] J. Fernández de Bobadilla, T. Pelka. "Fibrations by Lagrangian tori for maximal Calabi-Yau degenerations and beyond". Arxiv 2312.13248.
[42] J. Fernández de Bobadilla, I. Pallarés, M. Saito. Constant coefficient and intersection complex L-classes of projective varieties. Arxiv:2407.11769.