Submitted
J. Kim, D. Ko, C. Min, and B. Lee, A stable and convergent monolithic Hodge decomposition for fluid-solid interaction in octree grids.
S. Han and J. Kim, Time-asymptotic stability of composite wave for the one-dimensional compressible fluid of Korteweg type. arXiv
S. Han, M.-J. Kang, J. Kim, N. Kim, and H. Oh, Convergence to superposition of boundary layer, rarefaction and shock for the 1D Navier-Stokes equations. arXiv
Y.-P. Choi, J. Kim, and O. Tse, Derivation of nonlinear aggregation-diffusion equation from a kinetic BGK-type equation. arXiv
J. Kim and B. Moon, Fourier pseudo-spectral methods for the Chern-Simons-Dirac equations in the non-relativistic limit.
J. Kim and J. Shin, Local well-posedness and asymptotic analysis of a nonlocal incompressible Navier--Stokes--Korteweg system.
Published / Accepted papers to Journal
[62] S. Y. Cho, J. Kim, and S.-B. Yun, Tsallis-BGK model near equilibrium. To appear in SIAM J. Math. Anal.
[61] J. Kim, Existence and asymptotic analysis of a Vlasov-Fokker-Planck/Magnetohydrodynamic system. To appear in Anal. Appl.
[60] J. Kim, D. Ko, C. Min, and B. Lee, Random Sampling-Based Gradient Descent Method for Optimal Control Problems with Variance Reduction. To appear in Math. Models Methods Appl. Sci.
[59] J. KIm and B. Moon, Finite difference time domain methods for the Chern-Simons-Schrödinger equations, J. Comput. Appl. Math. 473 (2026) 116851.
[58] X. Huang, M.-J. Kang, J. Kim, and H. Lee, Asymptotic behavior toward viscous shock for impermeable wall and inflow problems of barotropic Navier-Stokes equations. J. Math. Anal. Appl. 552 (2025) 129803. arXiv
[57] S. Han, M.-J. Kang, J. Kim, and H. Lee, Long-time behavior towards viscous-dispersive shock for Navier-Stokes equations of Korteweg type. J. Differential Equations 426 (2025) 317-387. arXiv*
[56] J. Kim, B. Lee, C. Min, J. Park, and K. Ryu, Density Estimation-based Stein Variational Gradient Descent. Cogn. Comput. 17 (2025) Article No. 5.
[55] D. Kim and J. Kim, Emergent behaviors of a non-abelian quantum synchronization model over the unitary group. Eur. J. Appl. Math. 36 (2025) 328-348.*
[54] J. Kim and B. Moon, Quantified asymptotic analysis for the relativistic quantum mechanical system with electromagnetic fields. J. Math. Anal. Appl. 543 (2025) 128927.
[53] J. Kim, B. Moon, and J. Park, A kinetic description for the electromagnetic response of the charged particles to Chern-Simons gauge fields. Phys. D. 470 (2024) 134409.
[52] J. Kim and B. Moon, Hydrodynamic limit of the Maxwell-Schrödinger equations to the compressible Euler-Maxwell equations. J. Differential Equations 397 (2024) 34-54.
[51] D. Kim and J. Kim, Low-dimensional reduction of the non-Abelian quantum synchronization models on the unitary group. Kinet. Relat. Models 17 (2024) 436-467.*
[50] J. Kim and B. Moon, Finite difference time domain methods for the Dirac equation coupled with the Chern-Simons gauge field. J. Sci. Comput. 99 (2024) Article No. 9.
[49] J. Byeon, J. Kim and S.-Y. Ha, Emergence of state-locking for the first-order nonlinear consensus model on the real line. Kinet. Relat. Models 16 (2023) 423-457.
[48] S. Han, M.-J. Kang and J. Kim, Large-time behavior of composite waves of viscous shocks for the barotropic Navier-Stokes equations. SIAM J. Math. Anal. 55 (2023) 5526-5574.
[47] J. Kim and B. Moon, Quantified hydrodynamic limits for Schrödinger-type equations without the nonlinear potential. J. Evol. Equ. 23 (2023) Article No. 51.
[46] J. Kim, and B. Moon, Hydrodynamic limits of Manton's Schrödinger system. Commun. Pure Appl. Anal. 22 (2023) 2278-2297.
[45] J. Kim, C. Min, and B. Lee, A super-convergence analysis of the Poisson solver with octree grids and irregular domains. J. Comput. Phys. 488 (2023) 112212.
[44] Y.-P. Choi and J. Kim, Rigorous derivation of the Euler-Alignment model with singular communication weights from a kinetic Fokker-Planck-alignment model. Math. Models Methods Appl. Sci. 33 (2023) 31-65.
[43] S.-Y. Ha, J. Kim and J. Park, Fast and slow clustering dynamics of Cucker-Smale ensemble with internal oscillatory phases. Math. Models Methods Appl. Sci. 33 (2023) 1053-1097.
[42] J. Kim and I. Yang, Maximum entropy optimal control of continuous-time dynamical systems. IEEE Trans. Autom. Control. 68 (2023) 2018-2033.
[41] S.-Y. Ha, M. Kang, D. Kim, J. Kim, I. Yang, Stochastic consensus dynamics for nonconvex optimization on the Stiefel manifold: Mean-field limit and convergence. Math. Models Methods Appl. Sci. 32 (2022) 533-617.
[40] H. Ahn, S.-Y. Ha, and J. Kim, Nonrelativistic limits of the relativistic Cucker-Smale model and its kinetic counterpart. J. Math. Phys. 63 (2022) 082701.
[39] D. Kim and J. Kim, Aggregation and disaggregation of active particles on the unit sphere with time-dependent frequencies. Discrete Contin. Dyn. Syst.-Ser. B. 27 (2022) 2247-2273.*
[38] D. Kim and J. Kim, On the emergent behavior of the swarming models on the complex sphere. Stud. Appl. Math. 148 (2022) 1303-1338.
[37] J. Kim and B. Moon, Finite difference methods for the one-dimensional Chern-Simons Gauged models. Discrete Contin. Dyn. Syst.-Ser. B. 27 (2022) 6417-6439.
[36] J. Kim and B. Moon, Hydrodynamic limits of the nonlinear-Schrödinger equation with the Chern-Simons gauge fields. Discrete Contin. Dyn. Syst. 42 (2022) 2541-2561.
[35] B. Lee, J. Kim, and C. Min, Super-convergence analysis on two symmetric Poisson solvers in Octree grids. J. Comput. Phys. 464 (2022) 111324.
[34] J. Byeon, S.-Y. Ha, and J. Kim, Asymptotic flocking dynamics of a relativistic Cucker-Smale flock under singular communications. J. Math. Phys. 63 (2022) 012702.
[33] J. Kim, A Cucker-Smale flocking model with the Hessian communication weight and its first-order reduction. J. Nonlinear Sci. 32 (2022) Article No. 20.*
[32] H. Ahn, S.-Y. Ha, and J. Kim, Uniform stability of the Euclidean relativistic Cucker-Smale model and its application to a mean-field limit. Commun. Pure Appl. Anal. 20 (2021) 4209-4237.
[31] J. Kim, First-order reduction and emergent behavior of the one-dimensional kinetic Cucker-Smale equation. J. Differential Equations 302 (2021) 496-532.*
[30] J. Kim, D. Poyato and J. Soler, Hydrodynamic limit of a coupled Cucker-Smale system with strong and weak internal variable relaxation. Math. Models Methods Appl. Sci. 31 (2021) 1163-1235.
[29] J. Kim, B. Perthame, and D. Salort, Fast voltage dynamics of voltage-conductance models for neural networks. Bull. Braz. Math. Soc, New Series (2021) 1-34.
[28] S.-Y Ha, J. Kim, and T. Ruggeri, Kinetic and hydrodynamic models for the relativistic Cucker-Smale ensemble and emergent dynamics. Commun. Math. Sci. 19 (2021) 1945-1990.*
[27] J. Kim, J. Shin, and I. Yang, Hamilton-Jacobi Deep Q-learning for deterministic continuous-time systems with Lipschitz continuous controls. J. Mach. Learn. Res. 22 (2021) 1-34
[26] S.-Y. Ha, J. Jung, J. Kim, J. Park and X. Zhang, A mean-field limit of the particle swarmalator model. Kinet. Relat. Models 14 (2021) 429-468.
[25] D. Kim, and J. Kim, Stochastic Lohe matrix model on the Lie group and mean-field limit. J. Stat. Phys. 178 (2020) 1467-1514.
[24] J. Kim, and W. Zhou, Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinet. Relat. Models 13 (2020) 623-651.
[23] S.-Y. Ha, J. Kim, and T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker-Smale flocking. Arch. Rational Mech. Anal. 235 (2020) 1661-1706.
[22] M.-J. Kang and J. Kim, Propagation of mono-kinetic solution in Cucker-Smale-type kinetic equations. Commun. Math. Sci. 18 (2020) 1221-1231.*
[21] M.-J. Kang, S.-Y. Ha, J. Kim, and W. Shim, Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Commun. Pure Appl. Anal. 19 (2020) 1233-1256.
[20] B. Kim, J. Kim, S. Huh, S. You and I. Yang, Multi-Objective Predictive Taxi Dispatch via Network Flow Optimization. IEEE Access 8 (2020) 21437-21452.
[19] Y.-P. Choi, S.-Y. Ha, J. Jung, and J. Kim, On the coupling of kinetic Thermomechanical Cucker-Smale equation and compressible viscous fluid system. J. Math. Fluid Mech. 22:4 (2020).
[18] S.-Y. Ha, J. Kim, P. Kuchling and O. Kutoviy, Infinite particle systems with collective behaviour and related mesoscopic equations. J. Math. Phys. 60 (2019) 122704.*
[17] S.-Y. Ha, J. Jung, J. Kim, J. Park, and X. Zhang, Emergent behaviors of the swarmalator model for position-phase aggregation. Math. Models Methods Appl. Sci. 29 (2019) 2225-2269.*
[16] G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler, Vehicular traffic, crowds, and swarms. From kinetic theory and multi scale methods to applications and research perspective. Math. Models Methods Appl. Sci. 29 (2019) 1901-2005.
[15] J. Kim, J. Jung, Y. Park, B. Lee, and C. Min, An energy-stable and second-order accurate method for solving the incompressible Navier-Stokes equations. J. Korean Soc. Ind. Appl. Math. 23 (2019) 93–114.
[14] S.-Y. Ha, J. Kim, P. Pickl and X. Zhang, A Probabilistic approach for kinetic Cucker-Smale model with singular communication. Kinet. Relat. Models 12 (2019) 1045-1067.*
[13] H.-O. Bae, S.-Y., Ha, J. Kim, D. Ko, and S. Son, Flocking behaviors of a Cucker-Smale ensemble in a cylindrical domain. SIAM J. Math. Anal. 51 (2019) 2390-2424.*
[12] S.-Y.- Ha, D. Kim, J. Kim, and X. Zhang, Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization. J. Math. Phys. 60 (2019) 051508.
[11] H.-O. Bae, S. Cho, J. Kim, and S.-B. Yun, A kinetic description for the herding behavior in financial market. J. Stat. Phys. 176 (2019) 398-424.
[10] Y.-P. Choi, S.-Y. Ha and J. Jung, and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluid. Nonlinearity 32 (2019) 1597-1640.*
[9] J.-G. Dong, S.-Y. Ha and D. Kim, and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles. J. Differential Equations 266 (2019) 2373-2407.
[8] S.-Y. Ha, J. Kim, C. Min, T. Ruggeri, and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model. Quart. Appl. Math. 77 (2019) 131-176.*
[7] S.-Y. Ha, J. Kim, J. Park, and X. Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line. Arch. Rational Mech. Anal. 231 (2019) 319-365.
[6] Y.-P. Choi, S.-Y. Ha, and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Netw. Heterog. Media 13 (2018) 379--407.*
[5] S.-Y. Ha, J. Kim, C. Min, T. Ruggeri, and X. Zhang, A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field. Anal. Appl. 16 (2018) 757-805.*
[4] S.-Y. Ha, J. Kim, and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles. SIAM J. Math. Anal. 50 (2018) 3092-3121.*
[3] S.-Y. Ha, J. Kim, and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit. Kinet. Relat. Models 11 (2018) 1157– 1181.
[2] S.-Y. Ha, J. Kim, J. Park, and X. Zhang, Uniform stability and mean-field limit for the augmented Kuramoto model. Netw. Heterog. Media 13 (2018) 297–322.
[1] Y. Park, J. Kim, J. Jung, E. Lee, and C. Min, An Efficient MILU Preconditioning for Solving the 2D Poisson equation with Neumann boundary condition. J. Comput. Phys. 356 (2018) 115-126.
Published / Accepted papers to Conference Proceeding
[3] S. Han, M.-J. Kang, and J. Kim, Large time behavior of Navier-Stokes flows perturbed from Riemann data in 1D, RIMS Kôkyûroku, No.2299 (2022).
[2] J. Kim, I. Yang, Hamilton-Jacobi-Bellman equations for Q-learning in continuous time. Proc. Mach. Learn. Res. (2nd Learning for Dynamics and Control (L4DC) conference) 120 (2020) 739-748.
[1] J. Kim, M. Kang, D. Kim, S.-Y. Ha and I. Yang, A stochastic consensus method for nonconvex optimization on the Stiefel manifold. 2020 59th IEEE Conference on Decision and Control (CDC 2020) 1050-1057.