Teaching

Boston College, Chestnut Hill, MA:

  1. Spring 2018: MATH 2202 04: Multivariable Calculus
  2. Spring 2018: MATH 2202 05: Multivariable Calculus
  3. Fall 2017: MATH 1100 07: Calculus I
  4. Fall 2017: MATH 1100 08: Calculus I
  5. Fall 2017: MATH 1100 09: Calculus I
  6. Spring 2017: MATH 2202 01: Multivariable Calculus
  7. Spring 2017: MATH 2216 04: Introduction to Abstract Mathematics
  8. Fall 2016: MATH 2202 04: Multivariable Calculus
  9. Fall 2016: MATH 2202 05: Multivariable Calculus
  10. Fall 2016: MATH 4460 01: Complex Variables

Fordham University, Bronx, NY:

  1. Spring 2016: MATH 1205-R05: Applied Calculus I
  2. Spring 2016: MATH 2005-R01: Multivariate Calculus II
  3. Fall 2015: MATH 1206-R03: Calculus I (recitation)
  4. Fall 2015: MATH 1206-R04: Calculus I
  5. Fall 2015: MATH 1206-R07: Calculus I (recitation)
  6. Fall 2015: MATH 2004-R01: Multivariate Calculus I
  7. Fall 2015: MATH 2005-R01: Multivariable Calulus II (recitation)
  8. Summer 2015 Session 2: MATH 1109-R21: Math for Business: Calculus
  9. Summer 2015 Session 1: MATH 2001-R11: Discrete Mathematics
  10. Spring 2015: MATH 1206-R03: Calculus I (recitation)
  11. Spring 2015: MATH 1206-R04: Calculus I (recitation)
  12. Spring 2015: MATH 1206-R06: Calculus I (recitation)
  13. Spring 2015: MATH 3002-R01: Differential Equations
  14. Fall 2014: MATH 1100-R02: Finite Mathematics
  15. Fall 2014: MATH 1100-R03: Finite Mathematics
  16. Fall 2014: MATH 3008-R01: Number Theory
  17. Summer 2014 Session 2: MATH 1000-R21: Precalculus
  18. Summer 2014 Session 1: MATH 2001-R11: Discrete Mathematics
  19. Spring 2014: MATH 2006-R02: Linear Algebra I
  20. Spring 2014: MATH 3002-R01: Differential Equations
  21. Fall 2013: MATH 1100-R02: Finite Mathematics
  22. Fall 2013: MATH 1100-R03: Finite Mathematics
  23. Fall 2013: MATH 1700-R01: Mathematical Modeling
  24. Summer 2013 Session 2: MATH 1000-R21: Precalculus
  25. Summer 2013 Session 1: MATH 2001-R11: Discrete Mathematics
  26. Spring 2013: MATH 1206-R03: Calculus I (recitation)
  27. Spring 2013: MATH 1206-R04: Calculus I (recitation)
  28. Spring 2013: MATH 1207-R01: Calculus II
  29. Spring 2013: MATH 2004-R01: Multivariate Calculus I
  30. Spring 2013: MATH 2005-R01: Multivariate Calculus II (recitation)
  31. Fall 2012: MATH 1109-R06: Math for Business: Calculus
  32. Fall 2012: MATH 1203-R01: Applied Calculus I

Saint Louis University, St. Louis, MO:

  1. Spring 2012: MATH 143-01: Calculus II
  2. Spring 2012: MATH143-02: Calculus II
  3. Spring 2012: MATH 315-01: Introduction to Linear Algebra
  4. Fall 2012: MATH 142-05: Calculus I
  5. Fall 2012: MATH 142-07: Calculus I
  6. Fall 2012: MATH 355-01: Differential Equations
  1. Spring 2011: MATH 1823-014: Calculus and Analytic Geometry I (recitation)
  2. Spring 2011: MATH 1823-016: Calculus and Analytic Geometry I (recitation)
  3. Fall 2010: MATH 1523-003: Precalculus and Trigonometry
  4. Fall 2010: MATH 1523-010: Precalculus and Trigonometry
  5. Summer 2010: MATH 2433-002: Calculus and Analytic Geometry III
  6. Spring 2010: MATH 2423-011: Calculus and Analytic Geometry II (recitation)
  7. Spring 2010: MATH 2423-012: Calculus and Analytic Geometry II (recitation)
  8. Fall 2009: MATH 1823-032: Calculus and Analytic Geometry I (recitation)
  9. Fall 2009: MATH 1823-033: Calculus and Analytic Geometry I (recitation)
  10. Spring 2009: MATH 1523-003: Elementary Functions
  11. Fall 2008: MATH 1823-011: Calculus and Analytic Geometry I (recitation)
  12. Fall 2008: MATH 1823-012: Calculus and Analytic Geometry I (recitation)
  13. Summer 2008: MATH 1643-002: Precalculus for Business, Life and Social Sciences
  14. Spring 2008: MATH 1523-004: Elementary Functions
  15. Fall 2007: MATH 1503-007: Introduction to Elementary Functions
  16. Fall 2007: MATH 1503-009: Introduction to Elementary Functions
  17. Summer 2007: MATH 1503-001: Introduction to Elementary Functions
  18. Spring 2007: MATH 1523-004: Elementary Functions
  19. Fall 2006: MATH 1503-004: Introduction to Elementary Functions

Sage Worksheets:

Below you can find worksheets I have written in Sage for courses I have taught. They are free for you to use and modify as you wish.

Differential equations:

  • differential equations - 2014-10-14.sws (October 14, 2014) - Ordinary Differential Equations tutorial in Sage (single worksheet version)
  • zip file containing the worksheets listed below
  • HW 1 - graphing functions
  • HW 2 - solve initial value problems; graph solutions
  • HW 3 - plot slope fields
  • HW 4 - determine bifurcations; create bifurcation diagrams
  • HW 5 - approximate solutions with Euler's method; graph approximate solutions
  • HW 6 - plot direction fields of first order systems of two ordinary differential equations
  • HW 7 - approximate solutions using Euler's method for systems; graph approximate solutions
  • HW 8 - verify solutions of linear systems
  • HW 9 - compute eigenvalues and eigenvectors; find general solutions of linear systems
  • HW 10 - find general solutions to second order linear homogeneous differential equations with constant coefficients
  • HW 11 - find solutions of second-order linear non-homogeneous equations with constant coefficients and sketch their graphs.
  • HW 12 - find and plot solutions of second-order linear non-homogeneous equations with constant coefficients and how to plot direction fields for autonomous first-order systems of differential equation
  • HW 13 - check if linear systems are Hamiltonian
  • HW 14 - compute Laplace transforms and inverse Laplace transforms
  • HW 15 - compute Laplace transforms and inverse Laplace transforms (again!)

Linear algebra:

  • elementary linear algebra - 2015-03-07.sws (March 7, 2015) - Elementary Linear Algebra tutorial in Sage (single worksheet version)
  • zip file containing the worksheets listed below
  • HW 1 - graph functions
  • HW 2 - basic operations with vectors and matrices.; solve matrix equations
  • HW 3 - verify non-commutativity of matrix multiplication and compute powers, transposes, and inverses of matrices
  • HW 4 - compute the LU-factorization of a matrix
  • HW 5 - compute determinants of matrices
  • HW 6 - compute areas of triangles and parallelograms and volumes of tetrahedra and parallelepipeds; determine if points are colinear or coplanar.
  • HW 7 - perform basic operations with vectors; plot the span of two vectors in R^2
  • HW 8 - determine if a set of vectors is linearly independent; compute a basis of a subspace of R^n
  • HW 9 - compute the rank of a matrix; compute a change-of-basis, or transition, matrix
  • HW 10 - compute inner products products, norms, and angles between vectors
  • HW 11 - compute the norm and dot product of vectors in R^n; manipulate vectors in a list; Python programming
  • (there was no HW 12)
  • HW 13 - compute eigenvalues, eigenvectors, eigenspaces, and characteristic polynomials

Mathematical modeling:

© 2019 Jeff Breeding-Allison