Precision medicine

11. Choi, G.; Cheon, J.; Yoo, C.; Courcoubetis, G.; Ryoo, B.-Y.; Kim, K.-P.; Chang, H.-M.; Oh, H.-S.; Lim, S.; Koo, J.*; Kim, M.*. Predicting chemotherapy response in patients with advanced or metastatic pancreatic cancer using machine learning. In review.

10. Tsang, J.; Yap, Q.J.; Kapoor, S.; Cromarty, J.; Sen, S.; Kim, M.; Courcoubetis, G.; Cho, S.; Swartzfager, D.; Park, S.; Lim, S.; Holcomb, I.*; Koo, J.*. Identification of novel genetic mutations for the treatment prognostication of canine lymphoma. In review.

9. Choi, G.; Yap, Q.J.; Ko, N.; Namgoong, S.; Lee, H.; Oh, M.; Choi, G.; Lim, S.; Koo, J.*. A study on the relationship between MDR1 mutation and ex vivo drug sensitivities of canine lymphomas. Accepted for publication @ Biotechnology and Bioprocess Engineering.

8. Lee, H.; Ko, N.; Namgoong, S.; Ham, S.; Koo, J.*. Recent advances in and applications of ex vivo drug sensitivity analysis for blood cancers. Blood Research 2024, 59, 37. 

7. Kapoor, S.; Sen, S.; Tsang, J.; Yap, Q.J.; Park, S.; Cromarty, J.; Swartzfager, D.; Choy, K.; Lim, S., Koo, J.*; Holcomb, I.*. Prognostic Utility of the Flow Cytometry and Clonality Analysis Results for Feline Lymphomas. Veterinary Sciences 2024, 11. 331.

6. Park, S.; Kim, T.Y.; Cho, B.-S.; Kwag, D.; Lee, J.-M.; Kim, M.S.; Kim, Y.; Koo, J.; Raman, A.; Kim, T.K.; Kim, H-J. Prognostic value of ELN 2022 criteria and genomic clusters using machine learning in older adults with acute myeloid leukemia. Haematologica 2023, 109, 1095-1106.

5. Park, S-S.; Lee, J.; Byun, J.M.; Choi, K.; Kim, K.H.; Lim, S.; Dingli, D.; Jeon, Y.-W.; Yahng, S.-A.; Shin, S.-H.; Min, C-K.*; Koo, J.* ML-based sequential analysis to assist selection between VMP and RD for newly diagnosed multiple myeloma. npj Precision Oncology 2023, 7, 46.

4. Koo, J.; Choi, K.; Un, N.; Lim, S. Predicting clinical outcome or prognosis of cancer treatment based on machine learning. KR PCT Patent Appl. 2021/017819, November 30, 2021.

 3. Koo, J.; Choi, K.; Lee, P.; Polley, A.; Pudupakam, R.S.; Tsang, J.; Fernandez, E.; Han, E.J.; Park, S.; Swartzfager, D.; Qi, N.S.X.; Jung, M.; Ocnean, M.; Kim, H.U.; Lim, S.. Predicting dynamic clinical outcomes of the chemotherapy for canine lymphoma using a machine learning model. Vet. Sci., 2021, 8, 301.

 2. Bohannan, Z.; Pudupakam, R. S.; Koo, J.; Horwitz, H.; Tsang, J.; Polley, A.; Han, J. E.; Fernandez, E.; Park, S.; Swartzfager , D.; Qi, N. S. X.; Tu, C.; Rankin, W. V.; Thamm, D. H.; Lee, H. R.; Lim, S. Predicting likelihood of in vivo chemotherapy response in canine lymphoma using ex vivo drug sensitivity and immunophenotyping data in a machine learning model. Vet. Comp. Oncol. 2021, 19, 160-171.

  1.  Lim, S.; Kim, J.; Koo, J.;  Lee, H. Devices and methods for high-throughput screening of chemical and biochemical compounds. 2019, U.S. PCT Patent Appl. 18/44306, July 30, 2018.