Please let me know if you are interested in doing your thesis or any other research project with me. Collaborations and supervising projects are my favorite aspects of my job :) I have multiple open projects for different levels. Or you can propose your own topic (if it is related to my research).
Marius Högger (UZH, 2020), Bayesian Optimization with Neural Networks
Daniel Montagana (ETH, 2021), Leveraging Variance Swaps for non-parametric Option Price Surface Modelling
Nicholas Delmotte (ETH, 2021), Pricing Options via Machine Learning
Tereza Burgetová (ETH, 2021), Breakdown robust training of neural networks for outlier detection
Sebastian Schein (ETH, 2022), Feature Learning in Infinite-Width Neural Networks
Sven Rosenthal (UZH/ETH, 2022), On Inductive Bias towards Multi-Task Learning of L2-Regularized ReLU Networks
Markus Chardonnet (ETH/IBM Research, 2023), Probabilistic Forecasting for Time Series Anomaly Detection
Felix Illes (ETH, 2024), Monotone Neural Networks: An Experimental Survey
Sören Lambrecht (ETH 2025), Signal-Agnostic Uncertainty Quantification via Joint Calibration of Aleatoric and Epistemic Uncertainty in High Noise-to-Signal Settings
Alexis Stockinger (ETH, 2021), On the Reduction of Deep ReLU Networks Part 2
Aurelio Dolfini (ETH, 2022), ML-based Uncertainty Quantification on Real World Data
Michele Meziu (ETH, 2022), Learning Risk-neutral Measures with Neural Networks
Paul Gregoire (ETH, 2024), Multitask learning properties of Gaussian Processes and Neural Networks
Alexis Stockinger (ETH, 2020), On the Reduction of Deep ReLU Networks
Samuel Anzalone (ETH, 2023), Inverse Problem with Neural Networks for Calibration in Finance
Noah Gigler (ETH, 2024), Uncertainty Quantification of Option Price Extrapolation using Neural Networks
Marius Högger (UZH, 2021-2022)
Julien Siems (UZH, 2021)
Aurelio Dolfini (ETH, 2021), Pricing the Passport Option with Deep Reinforcement Learning
Sven Rosenthal (ETH, 2021), NTK vs P-functional theory
Sebastian Schein (ETH, 2021), Pricing the Passport Option with Deep Reinforcement Learning
Theo Smerting (ETH, 2021), Pricing the Passport Option with Deep Reinforcement Learning
Alexis Stockinger (ETH, 2021), Pricing the Passport Option with Deep Reinforcement Learning
Wahrscheinlichkeit und Statistik Spring 2020 (D-MATH) (Coordination and TA)
Machine Learning in Finance 2021 (Project supervision)
Wahrscheinlichkeitstheorie und Statistik Spring 2021 (D-ITET) (Coordination and TA)
Wahrscheinlichkeitstheorie und Statistik Spring 2022 (D-ITET) (Coordination)
Probability and Statistics Spring 2024 (D-MATH) (Coordination and TA)
Linear Algebra 1&2 (TA for large-scale question hours, 2017-2018)
Mathematics 1&2 for electrical engineering (TA, 2016-2017)
Technical mentoring for electrical engineering (mentor, 2016-2018)
Refresher course mathematics (TA, 2016-2018)