U. Amato, A. Antoniadis, I. De Feis, A. Doinychko, I. Gijbels, A. La Magna, D. Pagano, F. Piccinini, E. S. Suviseshamutu, C. Severgnini, A. Torres, and P. Vasquez (2024) Prediction of Yield in Semiconductor production from defects detected by SEM on the wafers, submitted
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2025) Functional Time Series Forecasting: A systematic Review, Stat Papers 66, 21 (2025). https://doi.org/10.1007/s00362-024-01645-y
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2024) Unsupervised curve clustering using wavelets, Adv Data Anal Classif (2024). https://doi.org/10.1007/s11634-024-00612-7
C. Angelini, D. De Canditiis, I. De Feis, A. Iuliano (2024) A Network‐Constrain Weibull AFT Model for Biomarkers Discovery, Biometrical Journal 66 (7), e202300272
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2023) Penalized wavelet nonparametric univariate logistic regression for irregular spaced data, Statistics, 57(5), 1037–1060. https://doi.org/10.1080/02331888.2023.2248679
citationcitationcitation
U. Amato, A. Antoniadis, I. De Feis, D. Fazio, C. Genua, I. Gijbels, D. Granata, A. La Magna, D. Pagano, G. Tochino, P. Vasquez (2023) Predictive Maintenance of Pins in the ECD equipment for Cudeposition in semiconductor industry, Sensors, 23(14):6249.
G. Masiello, F. Ripullone, I. De Feis, A. Rita, L. Saulino, P. Pasquariello, A. Cersosimo, S. Venafra, C. Serio (2022) The iasi water deficit index to monitor vegetation stress and early drying in summer heatwaves: An application to southern Italy, Land 11(8), 1366.
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2022) Penalized wavelet estimation and robust denoising for irregular spaced data, Computational Statistics, 37(4), 1621-1651.
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2022) Wavelet based robust estimation and variable selection in nonparametric additive models, Statistics and Computing 32 (1), 1-19.
A. Iuliano, A. Occhipinti, C. Angelini, I. De Feis, P. Liò (2021) COSMONET: An R package for survival analysis using screening-network methods, Mathematics 9 (24), 3262.
V. Policastro, D. Righelli, A. Carissimo, L. Cutillo, I. De Feis (2021) ROBIN (ROBustness In Network): an R package for the Validation of Community Robustness, The R Journal 13 (1), 292-309.
D. De Canditiis and I. De Feis (2021) Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames, Mathematics 9 (11), 1288.
U. Amato, A. Antoniadis, I. De Feis, I. Gijbels (2021) Penalised robust estimators for sparse and high-dimensional linear models, Statistical Methods & Applications 30 (1), 1-48
U. Amato, A. Antoniadis, I. De Feis, Y. Goude, A. Pichavant (2021) Short Term Electricity Load Forecasting for fine grained data: a hybrid PLAM semi-parametric approach, International Journal of Forecasting, volume 37, issue 1, pages 171-185, DOI: 10.1016/j.ijforecast.2020.04.001.
I De Feis, G Masiello, A Cersosimo (2020) Optimal Interpolation for Infrared Products from Hyperspectral Satellite Imagers and Sounders, Sensors 20 (8), 2352, DOI: 10.3390/s20082352
U. Amato, A. Antoniadis, I. De Feis (2020) Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions, Statistics Surveys, Volume 14, pages 32-70, DOI: 10.1214/20-SS128
Valletta, M.; Russo, R.; Baglivo, I.; Russo, V.; Ragucci, S.; Sandomenico, A.; Iaccarino, E.; Ruvo, M.; De Feis, I.; Angelini, C.; Iachettini, S.; Biroccio, A.; Pedone, P.V.; Chambery, (2020) A. Exploring the Interaction between the SWI/SNF Chromatin Remodeling Complex and the Zinc Finger Factor CTCF. Int. J. Mol. Sci. 2020, 21, 8950
MM. Marino, C. Rega, R. Russo, M. Valletta, M.T. Gentile, S. Esposito, I. Baglivo, I. De Feis, C. Angelini, T. Xiao, G. Felsenfeld, A. Chambery, P.V. Pedone (2019) Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF, Journal of Biological Chemistry, Volume 294, no 3, pages 861-873, DOI: 10.1074/jbc.RA118.004882
D. De Canditiis and I. De Feis (2019) Simultaneous non-parametric regression in RADWT dictionaries, Computational Statistics and Data Analysis, Volume 134, pages 36-57, DOI: 10.1016/j.csda.2018.11.003.
A.Iuliano, A. Occhipinti, C. Angelini, I. De Feis, P. Liò (2018) Combining pathway identification and breast cancer survival prediction via screening-network methods, Front Genet. 2018 Jun 14; 9:206. DOI: 10.3389/fgene.2018.00206.
A. Carissimo, L. Cutillo, I. De Feis, (2018) Validation of community robustness, Computational Statistics and Data Analysis, vol 120, pages 1-24, DOI: 10.1016/j.csda.2017.10.006
U. Amato, A. Antoniadis, I. De Feis, Y. Goude (2017) Estimation and group variable selection for additive partial linear models with wavelets and splines, South African Statist. J., volume 51, no. 2, pages 235 – 272, https://hdl.handle.net/10520/EJC-bd01e0d91
A.Iuliano, A. Occhipinti, C. Angelini, I. De Feis, P. Liò (2016), Cancer marker selection by using network Cox models, Frontiers in physiology, 7:208, DOI: 10.3389/fphys.2016.00208.
U. Amato, A. Antoniadis, I. De Feis (2016) Additive Model Selection, Statistical Methods and Applications, vol 25, issue 4, no 2, pages 519-564, DOI: 10.1007/s10260-016-0357-8.
Z. Anvar, M. Cammisa, V. Riso, I. Baglivo, H. Kukreja, A. Sparago, M. Girardot, S. Lad, I. De Feis, F. Cerrato, C. Angelini, R. Feil, P. V. Pedone, G. Grimaldi, A. Riccio (2016) ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells, Nucleic Acids Research, volume 44, issue 3, pages 1118–1132, DOI: 10.1093/nar/gkv1059.
Angela Cicatelli, Daniela Baldantoni, Paola Iovieno, Maurizio Carotenuto, Anna Alfani, Italia De Feis, Stefano Castiglione (2014) Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties, Science of Total Environment, volume 493, pages 1025–1035, DOI: 10.1016/j.scitotenv.2014.05.122.
C. Angelini, D. De Canditiis, I. De Feis (2014) Computational approaches for isoform detection and estimation: good and bad news, BMC Bioinformatics, 15:135, DOI: 10.1186/1471-2105-15-135
Masiello, G., C. Serio, S. Venafra, I. De Feis, and E. E. Borbas (2014), Diurnal variation in Sahara desert sand emissivity during the dry season from IASI observations, J. Geophys. Res. Atmos., 119, DOI: 10.1002/jgrd.50863.
Cutillo L., De Feis I, Nikolaidou C, Sapatinas T (2014) Wavelet density estimation for weighted data, Journal of Statistical Planning and Inference, DOI: 10.1016/j.jspi.2013.09.015, Volume 146, Pages 1–19.
G. Masiello, C. Serio, I. De Feis, M. Amoroso, S. Venafra, I.F. Trigo, P. Watts (2013) Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances, Atmos. Meas. Tech., 6, 3613-3634, DOI: 10.5194/amt-6-3613-2013.
A. Cicatelli, T. Fortunati, I. De Feis, S. Castiglione (2013) Oil composition and genetic biodiversity of ancient and new olive (Olea europea L.) varieties and accessions of southern Italy. Plant Sciences, Volume 210, Pages 82–92, DOI: 10.1016/j.plantsci.2013.05.011
P. Liò, C. Angelini, I. De Feis, V-A Nguyen (2012) Statistical Approaches to Use a Model Organism for Regulatory Sequences Annotation of Newly Sequenced Species. PLoS ONE 7(9): e42489. DOI: 10.1371/journal.pone.0042489
L. Murino, C. Angelini, I. De Feis, G. Raiconi, R. Tagliaferri (2011) Beyond the classical consensus clustering: the Least Squares approach to multiple solutions, Pattern Recognition Letters, Volume 32, Issue 12, Pages 1604-1612, DOI: 10.1016/j.patrec.2011.05.003
V. Costa, C. Angelini, I. De Feis, A. Ciccodicola (2010) Uncovering the Complexity of Transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 853916, 19 pages, DOI: 10.1155/2010/853916.
A. Abramovich, I. De Feis, T. Sapatinas (2009) Optimal testing for additivity in multiple nonparametric regression. Annals of the Institute of Statistical Mathematics, vol. 61, no. 3, pp. 691-71, DOI: 10.1007/s10463-007-0164-y
U. Amato, A. Antoniadis, I. De Feis, G. Masiello, M. Matricardi, C. Serio (2009) Technical note: Functional sliced inverse regression to infer temperature, water vapour and ozone from IASI data, Atmos. Chem. Phys., 9, pp. 5321-5330, DOI:10.5194/acp-9-5321-2009.
U. Amato, I. De Feis, A. Antoniadis (2006) Dimension reduction in functional regression with applications, Computational Statistics and Data Analysis, vol. 50, pp. 2422-2446, DOI: 10.1016/j.csda.2004.12.007.
D. De Canditiis, I. De Feis (2006) Convergence of Fourier Regularization for Smoothing Data, Journal of Computational and Applied Mathematics, vol. 196, issue 2, pp. 540-552, DOI: 10.1016/S0377-0427(97)00193-3.
A. Carissimo, I. De Feis, C. Serio (2005) The physical retrieval methodology for IASI: the δ-IASI code, Environmental Modelling and Software, vol.20, no. 9, pp. 1111-1126, DOI: 10.1016/j.envsoft.2004.07.003.
P. Besbeas, I. De Feis, T. Sapatinas (2004) A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts, International Statistical Review, vol. 72, no. 2, pp. 209-237, URL: https://www.jstor.org/stable/1403855.
U. Amato, A. Antoniadis, I. De Feis (2002) Fourier series estimation in separable models, Journal of Computational and Applied Mathematics, vol. 146, pp. 459-479, DOI: 10.1016/S0377-0427(02)00398-9.
U. Amato, I. De Feis (2000) Smoothing data with correlated noise via Fourier transform, Mathematics and Computers in Simulation, vol. 52, no. 3-4, pp. 175-196, DOI: 10.1016/S0378-4754(00)00147-6.
U. Amato, V. Cuomo, I. De Feis, F. Romano, C. Serio, H. Kobayashi (1999) Inverting for geophysical parameters from IMG radiances, IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no 3, pp. 1620-1632, DOI: 10.1109/36.763277.
U. Amato, I. De Feis (1997) Convergence for the regularized inversion of Fourier series, Journal of Computational and Applied Mathematics, vol. 87, pp. 261-284, DOI: 10.1016/S0377-0427(97)00193-3.
U. Amato, I. De Feis, C. Serio (1996) Linearization pseudo-noise and its effect on the retrieval of atmospheric state from infrared spectral radiances, Geophysical Research Letters, vol. 23, no. 18, pp.2565-2568, DOI: 10.1029/96GL02367.
F. Della Rocca, I. De Feis, G. Masiello, P. Pasquariello, C. Serio (2024) Machine learning techniques for spatial interpolation of the IASI water deficit index, Remote Sensing of Clouds and the Atmosphere XXIX 13193, 31-51
P Pasquariello, G Masiello, C Serio, V Telesca, G Liuzzi, M D'Emilio, R. Giosa, S. Venafra, I. De Feis, F. Della Rocca (2024) Estimating surface water loss using WDI and ECI: a climatological study on different land covers, Remote Sensing of Clouds and the Atmosphere XXIX 13193, 22-30
S. Pignatti, M.F. Carfora, R. Coluzzi, L. D’Amato, I. De Feis, D. Fonnegra Mora, G. Laneve, V. Imbrenda, M. Lanfredi, S. Mirzaei, A. Palombo, S. Pascucci, F. Rossi, F. Santini, T. Simoniello R. Vanguri (2024) Detection of Critical Areas Prone to Land Degradation Using Prisma: The Metaponto Coastal Area in South Italy Test Case IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, pp. 1063-1066.
P. Pasquariello, G. Masiello, C. Serio , G. Liuzzi , R. Giosa , M. D’Emilio , I. De Feis , S. Venafra (2024) Water Deficit Indices to Monitor Forests' Response to Droughts and Heat Waves IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, pp. 2483-2486.
F. Della Rocca, I. De Feis, P. Pasquariello, G. Masiello, C. Serio (2023) Comparison of the IASI water deficit index and other vegetation indices: the case study of the intense 2022 drought over the Po Valley, Proc. SPIE 12730, Remote Sensing of Clouds and the Atmosphere XXVIII, 127300C.
P. Pasquariello , G. Masiello , C. Serio, P. Mastro, G. Liuzzi, F. Della Rocca, I. De Feis (2023) Innovative remote-sensed thermodynamical indices to
identify vegetation stress and surface dryness: application to southern Italy over the last decade, Proc. SPIE 12730, Remote Sensing of Clouds and the Atmosphere XXVIII, 127300D.
I. De Feis, F. Lombardi, S. Giuffrida, R. Natalini (2022) I seminari scientifici online e la loro promozione attraverso i social network. Il caso dei seminari AIM - Artificial intelligence and Mathematics dell'istituto per le applicazioni del calcolo "Mauro Picone" del CNR, Quaderni di Comunicazione Scientifica, vol 2, 173-188, editore Rosenberg and Sellier.
C. Serio, G. Masiello, P. Pasquariello, I. De Feis, P. Mastro, F. Falabella, A. Cersosimo, S. Venafra, A. Pepe (2022) Exploiting the IASI profiling capability for surface parameters, atmospheric temperature, and water vapour to design emissivity contrast and water deficit indexes to monitor forests' response to droughts and heatwaves, Proc. SPIE 12265, Remote Sensing of Clouds and the Atmosphere XXVII, 1226502.
D. De Canditiis and I. De Feis (2020) Low and high resonance components restoration in multichannel data. In: La Rocca M., Liseo B., Salmaso L. (eds) Nonparametric Statistics. ISNPS 2018. Springer Proceedings in Mathematics & Statistics, vol 339. Springer, Cham. DOI: 10.1007/978-3-030-57306-5_16
I. De Feis, G. Masiello, C. Serio (2019) An optimal interpolation scheme for surface and atmospheric parameters: applications to SEVIRI and IASI, Proc. SPIE 11152, Remote Sensing of Clouds and the Atmosphere XXIV, 111520C (9 October 2019); DOI: 10.1117/12.2534520 (ISSN 0277-786X).
A. Iuliano, A. Occhipinti, C. Angelini, I. De Feis, and P. Lio' (2015) Applications of Network-Based Survival Analysis Methods for Pathways Detection in Cancer, in CIBB 2014, LNBI 8623, pp. 76-88. Springer, Heidelberg, C. di Serio, P. Lio', A. Nonis, R. Tagliaferri eds., (ISSN 0302-9743).
M. Amoroso, I. De Feis, G. Masiello, C. Serio, S. Venafra, and P. Watts (2013), Spatio-temporal constraints for emissivity and surface temperature retrieval: Preliminary results and comparisons for SEVIRI and IASI observation. In EARSeL eProceedings, Volume: 12/2, pp. 136-148, (ISSN 1729-3782).
C. Angelini, A. Ciccodicola, V. Costa, I. De Feis (2010) Analyzing the Whole Transcriptome by RNA-Seq Data: The Tip of the Iceberg, ERCIM NEWS 82, pp. 16-17, (ISSN0926-4981)
C. Angelini, I. De Feis, R. van der Wath, V.-A. Nguyen, P. Liò (2010) Combining Replicates and Nearby Species Data: Methodologies, Examples and Results Interpretation, in CIBB 2009, LNBI 6160, pp. 191-205. Springer, Heidelberg, F. Masulli, L. Peterson, and R. Tagliaferri eds., (ISSN 0302-9743).
L. Murino, C. Angelini, I. Bifulco, I. De Feis, G. Raiconi, R. Tagliaferri (2010) Multiple Clustering Solutions Analysis Through Lest-Square Consensus Algorithms, in CIBB 2009, LNBI 6160, pp. 215-227. Springer, Heidelberg, F. Masulli, L. Peterson, and R. Tagliaferri eds., (ISSN 0302-9743).
U. Amato, A. Antoniadis, I. De Feis, G. Masiello, M.Matricardi, C. Serio (2009) Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiance, in CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008): Proceedings of the International Radiation Symposium (IRC/IAM efis iAS), Foz do Iguaçu, Brazil, August 3-8 2008, AIP proceedings vol. 1100, pp. 211-214 (2009), T. Nakajima and M. A. Yamasoe eds, (ISSN 0094-243X).
C. Angelini, L. Cutillo, I. De Feis, P. Lio', R. van der Wath (2008) Combining experimental evidences from replicates and nearby species data for annotating novel genomes, in COLLECTIVE DYNAMICS: TOPICS ON COMPETITION AND COOPERATION IN THE BIOSCIENCES: A Selection of Papers in the Proceedings of the BIOCOMP2007 International Conference, AIP proceedings vol. 1028, pp. 277-291 (2008), A. Buonocore, E. Pirozzi, L.M. Ricciardi eds (ISSN 0094-243X)
C. Angelini, L. Cutillo, I. De Feis, P. Lio', R. van der Wath (2007) Identifying regulatory sites using neighborhood species, in Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 5th European Conference, EvoBIO 2007, Lecture Notes in Computer Science, Vol. 4447, pp. 1-10, E. Marchiori, J. H. Moore, J. C. Rajapakse Eds. (ISSN 0302-9743)
I.De Feis, A.M. Lubrano, C. Serio (2003) Channel selection for water vapor retrievial, Remote Sensing of Clouds and the Atmosphere VII, SPIE Vol. 4882, pp. 363-374, K. Schaefer, O. Lado-Bordowsky, A. Comeron, Richard H. Picard Eds., (ISSN 0277-786X).
I. De Feis, A.M. Lubrano, G. Masiello, C. Serio (2002) Infrared atmospheric sounding interferometer performance for temperature and water vapor retrievial, Remote Sensing of Clouds and the Atmosphere VI, SPIE Vol. 4539, pp. 94-105, K. Schaefer, O. Lado-Bordowsky, A. Comeron, M. R. Carleer, J. S. Fender Eds., (ISSN 0277-786X).
I.De Feis, A.M. Lubrano, G. Masiello, C. Serio (2001) Simultaneous temperature and water vapour profile from IASI radiances; Remote Sensing of Clouds and the Atmosphere V, SPIE Vol. 4168, pp. 115-123, J.E. Russel, K. Schäfer, O. Lado-Bordowsky Eds., (ISSN 0277-786X).
I. De Feis, M. D. Goldberg, A. M. Lubrano, L. M. Mc Millin, C. Serio (2000) Iasi Superchannels: the Case of Temperature and Water Vapour Retrieval, The 1999 EUMETSAT Meteorological Satellite Data Users' Conference Proceedings, pp. 529-536, EUMETSAT Editor, (ISSN 1011-3932).
U. Amato, I. De Feis (1998) Retrieving a function from Hermite-Fourier coefficients affected by noise, Supplemento ai Rendiconti del Circolo Matematico di Palermo, serie II, no. 52, pp. 194-206 (ISSN 1592-9531).
U. Amato, I. De Feis, C. Serio (1998) Retrieval of Temperature Vertical Profile from Radiance Spectra by the Inversion of Radiative Transfer Equation; Satellite Remote Sensing of Clouds and the Atmosphere II, SPIE vol. 3220, pp. 186-196, J. D. Haigh Editor, (ISSN 0277-786X).
I. De Feis, A. M. Lubrano, R. Rizzi, C. Serio (1998) The impact of radiometric noise on the performance of the Radiation Explorer in the Far Infrared (REFIR); Satellite Remote Sensing of Clouds and the Atmosphere III, SPIE Vol. 3495, pp. 256-265, J. E. Russel Editor, (ISSN 0277-786X).
U. Amato, I. De Feis, C. Serio (1995) Regularized Inverse Algorithms for Temperature and Absorbing Constituent Profiles from Radiance Spectra; Passive Infrared Remote Sensing of Clouds and the Atmosphere III, Proc. SPIE vol. 2578, pp. 205-216, D. K. Lynch and E. P. Shettle Eds, (ISSN 0277-786X).
I. De Feis (2019) Dimensionality Reduction, Reference Module in Life Sciences, Encyclopedia of Bioinformatics and Computational Biology, vol. 1, pp 486-494, (ISBN 978-0-12- 811432-2).
A. Iuliano, A. Occhipinti, Haouming, C. Angelini, I. De Feis, P. Liò (2014). Network-based survival analysis methods for pathway detection in cancer, in C. Di Serio, P. Liò, S. Richardson, R. Tagliaferri (eds), Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB2014, Cambridge (UK), 26-28/06/2014, (ISBN 9788890643743).
G. Masiello, C. Serio, M. Amoroso, G. Liuzzi, S. Venafra, U. Amato, I. De Feis, P. Watts (2013). Kalman filter retrieval of Surface Temperature and Emissivity from SEVIRI observations and comparison with IASI and MODIS products. Proceedings of 2013 EUMETSAT Meteorological Satellite Conference. Vienna, Austria, 16 - 20 September 2013, Darmstadt, Germany: EUMETSAT.
P. Lio, C. Angelini, I. De Feis, V. –A. Nguyen, L. Cutillo, R. van der Wath (2008). Statistical issues for combining replicates and nearby species data and different omics, in S. Barber, P.D. Baxter, A. Gusnanto & K.V. Mardia (eds), The Art and Science of Statistical Bioinformatics, pp.50-54. Leeds, Leeds University Press, (ISBN 978 0 85316 273 5).
U. Amato, D. De Canditiis, I. De Feis, C. Serio, H. Kobayashi (1998) The CHIARA inversion algorithm for IMG, Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International, pp. 2538-2540, vol. 5, Y. Kuga and D. Winebrenner Eds., (ISBN: 0-7803-4403-0).
G. Fornaro, S. Guarino, U. Amato, R. Lanari, E. Sansosti, I. De Feis, P. Berardino, A. Pauciullo (2006) Clu-SBAS e Lilligrid - Cluster per l'elaborazione di dati telerilevati, Centro di Competenza AMRA della Regione Campania, Napoli (Italy), Technical Report
Carissimo, I. De Feis, G. Grieco, G. Masiello, C. Serio (2004) Bias and Variance Properties of a New Inverse Tool for Geophysical Parameters, proceedings 2004 IEEE Gold Conference on Remote Sensing.
U. Amato, I. De Feis, V. Cuomo, C. Serio, (1994) Regularization methods to solve inverse problems: An investigation in the context of Fourier Sectroscopy from satellite, in Proc. 5th Workshop Atmospheric Science from Space using Fourier Transform Spectroscop, pp. 279-310, Tokyo, Japan, Nov. 30–Dec. 2.
G. Liuzzi, G. Masiello, C. Serio, S. Venafra, I. De Feis, Kalman Filter estimation of surface temperature and emissivity from SEVIRI, Final Report EUMETSAT (Contract EUM/CO/14/4600001329/PDW), EUMETSAT, Darmstadt, Germany, 2014. Revised by P. Watts
G. Masiello, C. Serio (P.I.), M. Amoroso, S. Venafra and I. De Feis, Study on space-time constrained Parameter Estimation from Geostationary data, Final Report EUMETSAT (Contract EUM/CO/11/4600000996/PDW), EUMETSAT, Darmstadt, Germany, 2013. Revised by P. Watts
U. Amato, I. De Feis, G. Grieco, G. Masiello, C. Serio (P.I.) (2010) Consolidation of scientific baseline for the development of a MTG-IRS L2 processor: role of Optimal Estimation with background state and associated error from climatology (Contract EUMETSAT EUM/CO/07/4600000/SAT), EUMETSAT, Darmstadt, Germany
U. Amato, I. De Feis, A. Lubrano, G. Masiello, C. Serio (P.I.), and M. Viggiano (2001) φ-IASI, The phisical Forward/Inverse Model for IASI, Final Report of AIDA phase II (Contract EUM/CO/99/688/DD), EUMETSAT, Darmstadt, Germany. Revised by P. Schlussel.
U. Amato, V. Cuomo, I. De Feis, F. Esposito, R. Rizzi, and C. Serio (P.I.) (1998) Assessment of IASI data for atmosphere (Contract EUM/CO/96/407/DD), EUMETSAT, Darmstadt, Germany. Revised by D. Diebel.
I. De Feis, S. Nativi, R. Rizzi, F. Romano, C. Serio (P.I.) (2003) Rendiconto Scientifico (Contract ASI I/R/167/01), Agenzia Spaziale Italiana, Roma, Italy.
Open Source software package in R: "AFTNet" (2024), available at https://onlinelibrary.wiley.com/doi/full/10.1002/bimj.202300272 in the Supporting Information
Open Source software package in R: "COSMONET" (2021), available at https://rdrr.io/github/cosmonet-package/COSMONET/
Open Source software package in R: “robin: ROBustness in Network” (2020), available at https://cran.r-project.org/web/packages/robin/index.html
Open Source software package in R: “Wavelet-based robust estimation and variable selection in nonparametric additive models”, available at
https://link.springer.com/article/10.1007/s11222-021-10065-z#Sec16
Open Source software package in R: “Penalized wavelet estimation and robust denoising for irregular spaced data”, available at
https://link.springer.com/article/10.1007/s00180-021-01174-4#Sec13
Open Source software package in R: “Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions” (2020), available at https://www.researchgate.net/publication/339141259_R-software_implementing_the_techniques_described_in_the_paper
Open Source software package in R: Penalised robust estimators for sparse and high-dimensional linear models (2020), available at https://link.springer.com/article/10.1007/s10260-020-00511-z#Sec555
Open Source software package in Matlab: “Simultaneous nonparametric regression in RADWT dictionaries” (2019), available at https://www.researchgate.net/publication/342068168_Matlab_code_implementing_the_technique_described_in_the_paper
Software package in Matlab: FSIR (Functional Sliced Inverse Regression) code (Contract EUMETSAT EUM/CO/07/4600000/SAT), 2010.
Open Source software package in Matlab: Poisson Wavelet Denoising Software (PoissonWavDen) (2004), available at http://www.mas.ucy.ac.cy/~fanis/links/software.html.
Software package in Fortran and Matlab: Phi-IASI code (Contracts EUMETSAT: EUM/CO/99/688/DD and EUM/CO/96/407/DD), 2001.