ISIT 2024 Workshop on Information-Theoretic Methods for Trustworthy Machine Learning

Location: Room Ypsilon IV-V-VI

8:30 – 9:00   Breakfast and coffee

9:00 – 10:00  Tutorial I: Peter Kairouz (Google) 

10:00 – 10:15 Break

10:1510:45 Lightning presentations (Spotlight): 

10:45 – 12:15 Invited talks I: 

Sanghamitra Dutta (UMD): Information-theoretic Methods in Explainability for High-Stakes Applications

Catuscia Palamidessi (Inria Saclay and LIX): Information Structures for Privacy and Fairness

Mario Diaz (UNAM): On the Differential Privacy Guarantees of Iterative Training Algorithms


12:15 – 1:00  Lunch 

1:002:45   Poster Session

2:45 – 3:45   Tutorial II: Kush Varshney (IBM): The AI Alignment Problem, Solutions, and Limits

3:45 – 4:00   Break

4:00 – 5:00   Invited talks II: 

Haewon Jeong (UCSB): Emerging Safety Issues in Generative Models

Ananda Suresh Theerta (Google): Improved Private Mean Estimation

List of accepted posters: