I work in the field of control theory and its applications. I mainly focus on the sliding mode control, stabilization by means of output feedback laws and stabilization of partial differential equation.
Submitted
Journal Papers
I. Balogoun, G. Mazanti, J. Auriol, I. Boussaada. A novel necessary and sufficient condition for the stability of 2 x 2 first-order linear hyperbolic systems.
Systems and Control Letters (Preprint version available here )
I. Balogoun, S. Marx, Y. Orlov, F. Plestan. Active disturbance rejection control for the stabilization of a linear hyperbolic system
International Journal of Robust and Nonlinear Control.
I. Balogoun, S. Marx, F. Plestan. Sliding mode control for a class of linear infinite-dimensional systems.
IEEE TAC (Preprint version available here).
I. Balogoun, S. Marx, D. Astolfi. ISS Lyapunov strictification via observer design and integral action control for a Korteweg-de Vries equation.
SIAM Journal on Control and Optimization (Preprint version available here).
T. Liard, I. Balogoun, S. Marx, F. Plestan. Boundary sliding control of a system of linear hyperbolic equations: a Lyapunov approach. Automatica, 135, 2022 (here).
I. Balogoun, S. Marx,T. Liard, F. Plestan. Super-twisting sliding mode control for the stabilization of a linear hyperbolic system. IEEE Control Systems Letters 2022
Conference Papers
I. Balogoun, S. Marx, Y. Orlov, F. Plestan. Active disturbance rejection control for a transport equation via a differentiatior.
IFAC World Congress 2023 (here)
LAGEPP Seminar, Lyon, May 25th 2023, Active disturbance rejection control for the stabilization of a hyperbolic system.
Control Theory & Inverse Problems (CTIP 2023), Monastir, May 9th 2023, Sliding mode control for a class of linear infinite-dimensional systems. [Slides]
CASY-DEI, Bologne, May 11th, 2022, Output regulation of a nonlinear Korteweg-de-Vries equation. [Slides]
LS2N Seminar, Nantes, April , 2022, Output regulation of a nonlinear Korteweg-de-Vries equation.
LAAS Seminar, Toulouse, January 27th 2021, Boundary sliding mode control of a system of linear hyperbolic equations: a Lyapunov approach. [Slides]