Tree canopy height is crucial for policymaking, especially in climate change mitigation. Current global tree canopy height estimation research shows limited predictive accuracy due to insufficient LiDAR data as ground-truth. The lack of comprehensive and up-to-date LiDAR data obstructs accurate global canopy height estimations with training coupled with remote sensing images. Additionally, machine learning (ML) models struggle with domain gaps, performing well in one location but poorly in another. This research aims to use large-scale synthetic rendering to create imitation environments with accurate tree canopy height measurements. A semi-automated workflow simulates diverse environments by modifying tree type, height, leaf density, lighting, and seasonal variations. Generated mimicked satellite images, Digital Surface Models (DSM), and Digital Terrain Models (DTM) provide ground truth data to train ML algorithms, improving global canopy height estimations. This will enhance global carbon stock assessments, climate change mitigation, land use management, and conservation efforts.
Alvites, C., O’Sullivan, H., Francini, S., Marchetti, M., Santopuoli, G., Chirici, G., Lasserre, B., Marignani, M., & Bazzato, E. (2024). High-Resolution Canopy Height Mapping: Integrating NASA’s Global Ecosystem Dynamics Investigation (GEDI) with Multi-Source Remote Sensing Data. Remote Sensing, 16(7), Article 7. https://doi.org/10/gtwbr6
Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi, W., & Silva, C. (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002. https://doi.org/10.1016/j.srs.2020.100002
Franks, S., Storey, J., & Rengarajan, R. (2020). The New Landsat Collection-2 Digital Elevation Model. Remote Sensing, 12(23), Article 23. https://doi.org/10.3390/rs12233909
Ge, S., Gu, H., Su, W., Praks, J., & Antropov, O. (2022). Improved Semisupervised UNet Deep Learning Model for Forest Height Mapping With Satellite SAR and Optical Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5776–5787. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2022.3188201
Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 7(11), 1778–1789. https://doi.org/10/gtvx2s
Li, H., Li, X., Kato, T., Hayashi, M., Fu, J., & Hiroshima, T. (2024). Accuracy assessment of GEDI terrain elevation, canopy height, and aboveground biomass density estimates in Japanese artificial forests. Science of Remote Sensing, 10, 100144. https://doi.org/10.1016/j.srs.2024.100144
Li, X., Li, L., Ni, W., Mu, X., Wu, X., Vaglio Laurin, G., Vangi, E., Stereńczak, K., Chirici, G., Yu, S., & Huang, H. (2024). Validating GEDI tree canopy cover product across forest types using co-registered aerial LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 207, 326–337. https://doi.org/10.1016/j.isprsjprs.2023.11.024
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C. E., Armston, J., Dubayah, R., Blair, J. B., & Hofton, M. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165. https://doi.org/10.1016/j.rse.2020.112165
Yu, Q., Ryan, M. G., Ji, W., Prihodko, L., Anchang, J. Y., Kahiu, N., Nazir, A., Dai, J., & Hanan, N. P. (2024). Assessing canopy height measurements from ICESat-2 and GEDI orbiting LiDAR across six different biomes with G-LiHT LiDAR. Environmental Research: Ecology, 3(2), 025001. https://doi.org/10.1088/2752-664X/ad39f2
https://gedi.umd.edu/data/products/
https://gedi.umd.edu/science/calibration-validation/
https://gedi.umd.edu/mission/mission-overview/