Iron is a mineral that our bodies need for growth and development. Your body uses iron to make hemoglobin, a protein in red blood cells. Hemoglobin carries oxygen from the lungs to all parts of the body. Iron is also important for healthy muscles, bone marrow, and organ function. Your body also needs iron to make some hormones.

Sometimes people can have trouble getting enough iron. There can be many causes, including blood loss, a poor diet, or a problem absorbing enough iron from foods. Those who are more likely to have low iron include people who:


Iron Man 3 Movie Free Download In Utorrent


tag_hash_104 šŸ”„ https://tlniurl.com/2yjZrR šŸ”„



If you have too little iron, you may develop iron-deficiency anemia. It may not cause symptoms at first, but over time, it can cause fatigue, shortness of breath, and trouble with memory and concentration. Treatment for low iron and iron-deficiency anemia is usually with iron supplements.

Too much iron can damage your body. For example, if you are healthy and take too many iron supplements, you may have symptoms such as constipation, nausea and vomiting, abdominal (belly) pain, and diarrhea. Higher iron levels can cause ulcers. Extremely high levels can lead to organ damage, coma, and death.

A disease called hemochromatosis can cause too much iron to build up in the body. Hemochromatosis is inherited (passed down through families). It is usually treated by removing blood (and iron) from your body on a regular basis.

Iron is a chemical element; it has symbol Fe (from Latin Ā ferrum 'iron') and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state.

The body of an adult human contains about 4 grams (0.005% body weight) of iron, mostly in hemoglobin and myoglobin. These two proteins play essential roles in oxygen transport by blood and oxygen storage in muscles. To maintain the necessary levels, human iron metabolism requires a minimum of iron in the diet. Iron is also the metal at the active site of many important redox enzymes dealing with cellular respiration and oxidation and reduction in plants and animals.[9]

The first three forms are observed at ordinary pressures. As molten iron cools past its freezing point of 1538 C, it crystallizes into itsĀ  allotrope, which has a body-centered cubic (bcc) crystal structure. As it cools further to 1394 C, it changes to its -iron allotrope, a face-centered cubic (fcc) crystal structure, or austenite. At 912 C and below, the crystal structure again becomes the bcc -iron allotrope.[10]

The physical properties of iron at very high pressures and temperatures have also been studied extensively,[11][12] because of their relevance to theories about the cores of the Earth and other planets. Above approximately 10 GPa and temperatures of a few hundred kelvin or less, -iron changes into another hexagonal close-packed (hcp) structure, which is also known as -iron. The higher-temperature -phase also changes into -iron, but does so at higher pressure.

Some controversial experimental evidence exists for a stableĀ  phase at pressures above 50 GPa and temperatures of at least 1500 K. It is supposed to have an orthorhombic or a double hcp structure.[13] (Confusingly, the term "-iron" is sometimes also used to refer to -iron above its Curie point, when it changes from being ferromagnetic to paramagnetic, even though its crystal structure has not changed.[10])

The melting and boiling points of iron, along with its enthalpy of atomization, are lower than those of the earlier 3d elements from scandium to chromium, showing the lessened contribution of the 3d electrons to metallic bonding as they are attracted more and more into the inert core by the nucleus;[15] however, they are higher than the values for the previous element manganese because that element has a half-filled 3d sub-shell and consequently its d-electrons are not easily delocalized. This same trend appears for ruthenium but not osmium.[16]

The melting point of iron is experimentally well defined for pressures less than 50 GPa. For greater pressures, published data (as of 2007) still varies by tens of gigapascals and over a thousand kelvin.[17]

In the absence of an external source of magnetic field, the atoms get spontaneously partitioned into magnetic domains, about 10 micrometers across,[20] such that the atoms in each domain have parallel spins, but some domains have other orientations. Thus a macroscopic piece of iron will have a nearly zero overall magnetic field.

Similar behavior is exhibited by some iron compounds, such as the ferrites including the mineral magnetite, a crystalline form of the mixed iron(II,III) oxide .mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}Fe3O4 (although the atomic-scale mechanism, ferrimagnetism, is somewhat different). Pieces of magnetite with natural permanent magnetization (lodestones) provided the earliest compasses for navigation. Particles of magnetite were extensively used in magnetic recording media such as core memories, magnetic tapes, floppies, and disks, until they were replaced by cobalt-based materials.

60Fe is an extinct radionuclide of long half-life (2.6 million years).[22] It is not found on Earth, but its ultimate decay product is its granddaughter, the stable nuclide 60Ni.[21] Much of the past work on isotopic composition of iron has focused on the nucleosynthesis of 60Fe through studies of meteorites and ore formation. In the last decade, advances in mass spectrometry have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work is driven by the Earth and planetary science communities, although applications to biological and industrial systems are emerging.[23]

In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of 60Ni, the granddaughter of 60Fe, and the abundance of the stable iron isotopes provided evidence for the existence of 60Fe at the time of formation of the Solar System. Possibly the energy released by the decay of 60Fe, along with that released by 26Al, contributed to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may bring further insight into the origin and early history of the Solar System.[24]

The most abundant iron isotope 56Fe is of particular interest to nuclear scientists because it represents the most common endpoint of nucleosynthesis.[25] Since 56Ni (14 alpha particles) is easily produced from lighter nuclei in the alpha process in nuclear reactions in supernovae (see silicon burning process), it is the endpoint of fusion chains inside extremely massive stars, since addition of another alpha particle, resulting in 60Zn, requires a great deal more energy. This 56Ni, which has a half-life of about 6 days, is created in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in the supernova remnant gas cloud, first to radioactive 56Co, and then to stable 56Fe. As such, iron is the most abundant element in the core of red giants, and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth.[26] It is also very common in the universe, relative to other stable metals of approximately the same atomic weight.[26][27] Iron is the sixth most abundant element in the universe, and the most common refractory element.[28]

Although a further tiny energy gain could be extracted by synthesizing 62Ni, which has a marginally higher binding energy than 56Fe, conditions in stars are unsuitable for this process. Element production in supernovas greatly favor iron over nickel, and in any case, 56Fe still has a lower mass per nucleon than 62Ni due to its higher fraction of lighter protons.[29] Hence, elements heavier than iron require a supernova for their formation, involving rapid neutron capture by starting 56Fe nuclei.[26]

In the far future of the universe, assuming that proton decay does not occur, cold fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into 56Fe nuclei. Fission and alpha-particle emission would then make heavy nuclei decay into iron, converting all stellar-mass objects to cold spheres of pure iron.[30]

Metallic or native iron is rarely found on the surface of the Earth because it tends to oxidize. However, both the Earth's inner and outer core, which together account for 35% of the mass of the whole Earth, are believed to consist largely of an iron alloy, possibly with nickel. Electric currents in the liquid outer core are believed to be the origin of the Earth's magnetic field. The other terrestrial planets (Mercury, Venus, and Mars) as well as the Moon are believed to have a metallic core consisting mostly of iron. The M-type asteroids are also believed to be partly or mostly made of metallic iron alloy.

While iron is the most abundant element on Earth, most of this iron is concentrated in the inner and outer cores.[40][41] The fraction of iron that is in Earth's crust only amounts to about 5% of the overall mass of the crust and is thus only the fourth most abundant element in that layer (after oxygen, silicon, and aluminium).[42]

Most of the iron in the crust is combined with various other elements to form many iron minerals. An important class is the iron oxide minerals such as hematite (Fe2O3), magnetite (Fe3O4), and siderite (FeCO3), which are the major ores of iron. Many igneous rocks also contain the sulfide minerals pyrrhotite and pentlandite.[43][44] During weathering, iron tends to leach from sulfide deposits as the sulfate and from silicate deposits as the bicarbonate. Both of these are oxidized in aqueous solution and precipitate in even mildly elevated pH as iron(III) oxide.[45] 0852c4b9a8

free download of hindi raja movie songs

free download new internet explorer 10

fl studio 11 free download full version