Sehyun Park, Jongjin Lee, Yunseop Shin, Ilsang Ohn, and Yongdai Kim. (2025). Knowledge distillation of uncertainty using deep latent factor models. Accepted to Advances in Neural Information Processing Systems.
Meng Qiu, Sally Paganin, Ilsang Ohn, and Lizhen Lin. (2025+). Bayesian nonparametric latent class analysis with different item types. Accepted to Psychological Methods.
Ilsang Ohn and Jisu Park^. (2025). Fast full conformal prediction for multiple test points. AIMS Mathematics. 10(3), 5143-5157. [Link]
Ilsang Ohn, Lizhen Lin, and Yongdai Kim. (2024). A Bayesian sparse factor model with adaptive posterior concentration. Bayesian Analysis, 19(4), 1277-1301. [Link][arXiv]
Ilsang Ohn and Lizhen Lin. (2024). Adaptive variational Bayes: Optimality, computation and applications. The Annals of Statistics, 52(1), 335-363. [Link][arXiv]
Yihao Fang, Ilsang Ohn, Vijay Gupta, and Lizhen Lin. (2024). Intrinsic and extrinsic deep learning on manifolds. Electronic Journal of Statistics, 18(1), 1160-1184. [Link][arXiv]
Dongha Kim, Yongchan Choi, Kunwoong Kim, Ilsang Ohn, and Yongdai Kim. (2024). IOFM: Using the interpolation technique on the over-fitted models to identify clean-annotated samples. AAAI Conference on Artificial Intelligence. [Link]
Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek, and Yongdai Kim. (2023). Masked Bayesian neural networks: Theoretical guarantee and its posterior inference. International Conference on Machine Learning. [Link][arXiv]
Ilsang Ohn and Lizhen Lin. (2023). Optimal Bayesian estimation of Gaussian mixtures with growing number of components. Bernoulli, 29(2), 1195-1218. [Link][arXiv]
Kunwoong Kim, Ilsang Ohn, Sara Kim, and Yongdai Kim. (2022). SLIDE: A surrogate fairness constraint to ensure fairness-consistency. Neural Networks, 154, 441-454. [Link][arXiv]
Dongha Kim, Kunwoong Kim, Insung Kong, Ilsang Ohn, and Yongdai Kim. (2022). Learning fair representation with a parametric integral probability metric. International Conference on Machine Learning. [Link][arXiv]
Ilsang Ohn and Yongdai Kim. (2022). Posterior consistency of factor dimensionality in high-dimensional sparse factor models. Bayesian Analysis. 17(2), 491-514 [Link]
Ilsang Ohn and Yongdai Kim. (2022). Nonconvex sparse regularization for deep neural networks and its optimality. Neural Computation, 34(2), 476-517. [Link][arXiv]
Ilsang Ohn, Seonghyeon Kim, Seung Beom Seo, Young-Oh Kim, and Yongdai Kim. (2021). Model-wise uncertainty decomposition in multi-model ensemble hydrological projections. Stochastic Environmental Research and Risk Assessment, 35(12), 2549–2565. [Link]
Yongdai Kim, Ilsang Ohn, and Dongha Kim. (2021). Fast convergence rates of deep neural networks for classification. Neural Networks, 138, 179-197. [Link]
Ilsang Ohn, Seonghyeon Kim, Seung Beom Seo, Young-Oh Kim, and Yongdai Kim. (2020). Bayesian uncertainty decomposition for hydrological projections. Journal of the Korean Statistical Society, 49(3), 953-975. [Link]
Ilsang Ohn and Yongdai Kim. (2019). Smooth function approximation by deep neural networks with general activation functions. Entropy, 21(7), 627. [Link]
Yongdai Kim, Ilsang Ohn, Jae-Kyoung Lee, and Young-Oh Kim. (2019). Generalizing uncertainty decomposition theory in climate change impact assessments. Journal of Hydrology X, 3, 100024. [Link]
Yongdai Kim, Young-Oh Kim, Jaeseok Kim, Woosung Kim, and Ilsang Ohn. (2016). Scaled ridge estimator and its application to multimodel ensemble approaches for climate prediction. Journal of the Korean Statistical Society, 45(2), 307-313. [Link]